دوره 12، شماره 24 - ( پاییز و زمستان 1400 1400 )                   جلد 12 شماره 24 صفحات 108-97 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

isazade V, aliegigy Z. (2021). Simulation of Flood Prone Areas using Perceptron Neural Network and GIS (Study Area: Zolachai watershed, Salmas City). J Watershed Manage Res. 12(24), 97-108. doi:10.52547/jwmr.12.24.97
URL: http://jwmr.sanru.ac.ir/article-1-1125-fa.html
عیسی زاده وحید، علی بیگی زهرا. شبیه‌سازی مناطق مستعد سیلاب با استفاده از شبکه عصبی پرسپترون و سیستم اطلاعات جغرافیایی (منطقه موردمطالعه: حوزه آبخیز زولاچای، شهرستان سلماس) پ‍‍ژوهشنامه مديريت حوزه آبخيز 1400; 12 (24) :108-97 10.52547/jwmr.12.24.97

URL: http://jwmr.sanru.ac.ir/article-1-1125-fa.html


دانشگاه تهران
چکیده:   (2458 مشاهده)
چکیده مبسوط
مقدمه و هدف: امروزه پدیده سیل یکی از پیچیده‌ترین رخدادهای مخاطره‌آمیز است که بیش از سایر بلایای طبیعی دیگر، همه‌ساله در نقاط مختلف دنیا منجر به ایجاد خسارت‌های جانی و مالی و تخریب اراضی کشاورزی می‌شود.
مواد و روش­ ها: به­ دلیل سیل‌خیز بودن حوضه آبریز زولاچای، شهرستان سلماس بررسی و شبیه‌سازی خطر وقوع سیل در این منطقه ضروری به­ نظر می‌رسد. لذا در این پژوهش از تلفیق شبکه عصبی مصنوعی پرسپترون (MLP) و GIS استفاده شده است. ابتدا پارامترهای تاثیرگذار در شبیه‌سازی مناطق سیلابی نظیر: لایه شیب، ارتفاع، جهت جریان، خاک و کاربری اراضی مورد بررسی قرارگرفته و این لایه‌های اطلاعاتی وارد نرم­ افزار ARCGIS5.3 شدند. لایه‌های اطلاعاتی مورد نظر با دستور Fishnet مورد پردازش قرار گرفتند و هرکدام از لایه‌ها به point  تبدیل شدند و این داده به همراه داده‌های تعلیمی که از گوگل ارث دریافت شده بود به شبکه عصبی معرفی شد. در شبکه عصبی پرسپترون لایه‌های ورودی شامل ۵ نورون و ۱۶ گره وارد مدل شدند.
یافته­ ها: نتایج نشان داد، ارتفاع دارای کم‌ترین وزن (R2=0.713) و بیشترین وزن مربوط به جهت جریان (R2=0.913) در شبیه‌سازی سیلاب حوزه آبخیز زولاچای، شهرستان سلماس می‌باشد.
نتیجه ­گیری: می‌توان بیان کرد تلفیق GIS و شبکه عصبی مصنوعی می‌تواند برای مدل‌سازی و شبیه‌سازی سیلاب در محیط‌های مکانی مختلف برای جلوگیری و کاهش خطرات محیطی بسیار مفید واقع شود.
 
متن کامل [PDF 1433 kb]   (510 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سنجش از دور و سامانه های اطلاعات جغرافيايی
دریافت: 1399/10/4 | ویرایش نهایی: 1400/12/3 | پذیرش: 1400/2/1 | انتشار: 1400/6/10

فهرست منابع
1. Cai, X., Y. Li, X. Guo and W. Wu. 2014 .Mathematical model for flood routing based on cellular automaton. Water Science and Engineering, 7(2): 133-142.
2. Dawson, C.W., R.J. Abrahart, A.Y. Shamseldin and R.L. Wilby. 2006. Flood Estimation at ungauged sites using artificial neural networks. Journal of Hydrology, (319): 391-409. [DOI:10.1016/j.jhydrol.2005.07.032]
3. Douvinet, J., D. Delahaye and P. Langlois. 2007. Use of cellular automata in physical geography, 15th European Colloquium of Theoretical and Quantitative Geography, Montreux, Switzerland.
4. Dalal, U., M. Fathi and K. Khoshdel. 2017. Application of new multi-criteria decision-making methods for the estimation of flooding potential with emphasis on geomorphic factors (Case Study: Ajorlu Basin), Geographic Space, 17(59): 67-82 (In Persian).
5. Elsafi, H. 2014. Artificial Neural Networks (ANNs) for floodforecasting at Dongola Station in the River Nile, Sudan,Alexandria Engineering Journal, 53(3): 655-662. [DOI:10.1016/j.aej.2014.06.010]
6. Gomez, H. and T. Kavzoglu. 2005. Assessment of shallow landslidesusceptibility using artificial neural networks in Jabonosa RiverBasin. Venezuela. Eng Geol, 78(1-2): 11-27. [DOI:10.1016/j.enggeo.2004.10.004]
7. Gholizadeh, A., E. Ghanavati. H. Afsharmanesh and H. Amanullahpour. 2018. Fuzzy Model Efficiency on Flooding Potential in the Basin of Zangmar, Geographic Space, 17(60): 227-245 (In Persian).
8. Haykin, S. 1999. Neural networks: a comprehensive foundation, 2ndend. Prentice Hall, New Jersey.
9. Hong, H., P. Tsangaratos, I. Ilia, J. Liu, A. Zhu and W. Chen. 2018. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China, Science of the Total Environment, (625): 575-588. [DOI:10.1016/j.scitotenv.2017.12.256]
10. Kasiviswanathana, K.S., H. Jianxun, K.P. Sudheerb and T. Joo-Hwa. 2016. Potential application of wavelet neural network ensembleto forecast stream flow for flood management, Journal of Hydrology, 536(4): 161-173. [DOI:10.1016/j.jhydrol.2016.02.044]
11. Kerh, T. and C.S. Lee. 2006. Neural networks forecasting of flood discharge atan unmeasured station using river upstream information. Journal of Advances in Engineering Software, (37): 533-543. [DOI:10.1016/j.advengsoft.2005.11.002]
12. Kholghi, M. 2002. The Use of MDCM Method in Prioritizing Sub-Watersheds structural Flood Control. Iranian Journal of Natural Resources, (55): 479-490 (In Persian).
13. Lek, S., M. Delacoste, P. Baran, I. Demopoulos, J. Lauga and S. Aulanier. 1996. Application of neural networks to modelling non-linearrelationships in ecology. Ecol Model, (90): 39-52. [DOI:10.1016/0304-3800(95)00142-5]
14. Liang, S. and C.R.C. Mohanty. 1997. Optimization of GIS-Based Flood Hazard Zoning a Case Study at the Mahanady Command Area in Cuttack District, Orrisa, India. Journal of Chinese Soil and Water Conservation, (28): 11-20.
15. Maier, H.R. and G.C. Dandy. 1996.The use of artificial neural networks forthe prediction of water quality parameters. Water Resour Res, (4): 1013-1022. [DOI:10.1029/96WR03529]
16. Reza, M.P. and S. Touraj. 2007. Flood zoning using GIS system (study plan: part of Qara Aghaj river in Fars province), the first urban GIS conference (In Persian).
17. Alireza, M. and M. Habibnejad Roshan. 2006. Study of flood prediction systems in Iran and their role in the protection of lands and residential areas along the canals, the first national conference on canal engineering, (In Pensian).
18. Hussein, N., M.A. Moghadam and M. Aramesh. 2013. Application of artificial neural network in simulation and flood prediction in Sarbaz catchment, Quarterly Journal of Geography and Development, 11(31): 15-28.
19. Nabizadeh, M., A. Masaedi. Hesam and A. Dehghani. 2012. Comparison of the performance of models based on fuzzy logic in predicting the daily discharge of Liquan River. Soil and Water Conservation Research, (19): 117-134 (In Persian).
20. Pradhan, B. 2009. Groundwater potential zonation for basalticwatersheds using satellite remote sensing data and GIS techniques.Central Eur Journal Geosci, 1(1): 120-129 [DOI:10.2478/v10085-009-0008-5]
21. Pereira, F.A.J. and S. Dos. 2006. Modeling a densely urbanized watershed with an artificial neural network, weather radar and telemetric data. Journal of Hydrology, (317): 31-48. [DOI:10.1016/j.jhydrol.2005.05.007]
22. Qanavati, E., O. Karam and M. Alikhani. 2012. Flood Risk Assessment and Zoning in Farahzad Basin (Tehran) Using Fuzzy Model, Journal of Geography and Environmental Planning, 23rd Consecutive Year, (48): 38 -121 (In Persian).
23. Sahoo, G.B., C. Ray and D. Carlo. 2006. Use of neural network topredict flash flood and attendant water qualities of a mountainous stream onOahu, Hawaii. Journal of Hydrology, (327): 525-538. [DOI:10.1016/j.jhydrol.2005.11.059]
24. Tokar, A.S. and P.A. Johnson. 1999. Rainfall-runoff modeling using Artificial Neural Network. Journal of Hydrology Engineering, (4): 232-239. [DOI:10.1061/(ASCE)1084-0699(1999)4:3(232)]
25. Thirumalaiah, K. and M.C. Deo. 2000. Hydrological forecasting using neural network. Journal of Hydrology Engineering, (5): 180-189. [DOI:10.1061/(ASCE)1084-0699(2000)5:2(180)]
26. United Nations Environment Program. 2002. Early warning, forecasting. And operational flood risk monitoring in Asia (Bangladesh,China and India). http://www.unep.org/geo/geo3.asp.Accessed 21 Aug 2010.
27. Xiao, Y., Sh. Yi and T. Zh. 2017. Integrated flood hazard assessment based on spatial ordered weighted averaging method considering spatial heterogeneity of risk preference, Science of the Total Environment, (600): 1034-1046. [DOI:10.1016/j.scitotenv.2017.04.218]
28. Vali, A., M. Ramesht, A. Seif and R. Ghazavi. 2010. Comparing efficiency neural networks and regression models for prediction of watershed sediment load flow forecasting by artificial neural network and conventional model. Alexandria Engineering Journal, (50): 345-350. [DOI:10.1016/j.aej.2012.01.005]
29. Yamani, M. and M. Enayati. 2006. The analyses of flood data in relation to thegeomorphologicspecification of Fas hand and Behjatabad basins. 2005. Journal of Geography Research, (54): 47-57 (In Persian). [DOI:10.2747/1538-7216.47.1.54]
30. Rezai, A., M. Mahdavi, K. Lox, S. Feyznaya and M.H. Mehdian. 2007. Regional peak flows modelling of Sefid Rood Dam's sub basins using artificialneural network. Journal of Science and Technology of Agriculture and Natural Resources, (11): 25-39 (In Persian).

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb