1. Adeline, K.R.M., C. Gomez, N. Gorretta and J.M. Roger. 2017. Predictive ability of soil properties to spectral degradation from laboratory Vis-NIR spectroscopy data. Geoderma. 288: 143-153. [
DOI:10.1016/j.geoderma.2016.11.010]
2. Askari, M.S., J. Cui, S.M. O'Rourke and N.M. Holden. 2015. Evaluation of soil structural quality using VIS-NIR spectra. Soil and Tillage Research, 146: 108-117. [
DOI:10.1016/j.still.2014.03.006]
3. Bilgili, A.V., H.M. van Es, F. Akbas, A. Durak and W.D. Hively. 2010. Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey. Journal of Arid Environments, 74(2010): 229-238. [
DOI:10.1016/j.jaridenv.2009.08.011]
4. Camargo, O.A., A.C. Moniz, J.A. Jorge and J.M. Valadares. 2009. Methods of Chemical, Mineralogical and Physical Analysis of Soils Used in the Pedology Section (Technical Bulletin n.106), Instituto Agronômico (IAC), Campinas.
5. Cambule, A.H., D.G. Rossiter, J.J. Stoorvogel and E.M.A. Smaling. 2012. Building a near infrared spectral library for soil organic carbon estimation in the Limpopo National Park, Mozambique. Geoderma, 183-184 (2012): 41-48. [
DOI:10.1016/j.geoderma.2012.03.011]
6. Casa, R., F. Castaldi, S. Pascucci, A. Palombo and S. Pignatti. 2013. A comparison of sensor resolution and calibration strategies for soil texture estimation from hyperspectral remote sensing. Geoderma, 197: 17-26. [
DOI:10.1016/j.geoderma.2012.12.016]
7. Curcio, D., G. Ciraolo, F. D'Asaro and M. Minacapilli. 2013. Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy. Procedia Environmental Sciences, 19(2013): 494-503. [
DOI:10.1016/j.proenv.2013.06.056]
8. Danesh, M., H.A. Bahrami, R. Darvishzadeh and A.A. Noroozi. 2016. Investigating clay contents using laboratory diffuse reflectance spectroscopy. Iranian Journal of RS&GIS, 8(1): 71-94 (In Persian).
9. Gomez, C., Y. Le Bissonnais, M. Annabi, H. Bahri and D. Raclot. 2013. Laboratory Vis-NIR spectroscopy as an alternative method for estimating the soil aggregate stability indexes of Mediterranean soils. Geoderma, 209-210(2013): 86-97. [
DOI:10.1016/j.geoderma.2013.06.002]
10. Greppi, G.F., S. Mura, D. Masci, L. De Cecco, S. Martini and F. Borfecchia. 2014. Analysis of soils in agriculture by hyperspectral imaging. Giornata mondiale del suolo-Workshop Il Suolo nella Pianificazione Territoriale, Alghero.
11. Guo, L., H. Zhang, T. Shi, Y. Chen, Q. Jiang and M. Linderman. 2019. Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images. Geoderma, 337: 32-41. [
DOI:10.1016/j.geoderma.2018.09.003]
12. Hong, Y., S. Chen, Y. Liu, Y. Zhang, L. Yu, Y. Chen and Y. Liu. 2019. Combination of fractional order derivative and memory-based learning algorithm to improve the estimation accuracy of soil organic matter by visible and near-infrared spectroscopy. Catena, 174: 104-116. [
DOI:10.1016/j.catena.2018.10.051]
13. Jong, S.M.D., E.A. Addink, L.P.H. van Beek and D. Duijsings. 2011. Physical characterization, spectral response and remotely sensed mapping of Mediterranean soil surface crusts. Catena, 86(2011): 24-35. [
DOI:10.1016/j.catena.2011.01.018]
14. Magalhaes, L.de.O., L.C. Arantes and J.W.B. Braga. 2019. Identification of NBOMe and NBOH in blotter papers using a handheld spectrometer and chemometric methods, Microchemistry Journal, 144(2019): 151-158,
https://doi.org/10.1016/j.microc.2018.08.051 [
DOI:10.1016/j.microc.2018.08.051.]
15. Matney, T., L.R. Barrett, M.B. Dawadi, D. Maki, C. Maxton, D.S. Perry, D.C. Roper, L. Somers and L.G. Whitman. 2014. In situ shallow subsurface reflectance spectroscopy of archaeological soils and features: a case-study of two Native American settlement sites in Kansas. Journal of Archaeological Science, 43(2014): 315-324. [
DOI:10.1016/j.jas.2013.11.027]
16. McDowell, M.L., G.L. Bruland, J.L. Deenik, S. Grunwald and N.M. Knox. 2012. Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy. Geoderma, 189-190(2012): 312-320. [
DOI:10.1016/j.geoderma.2012.06.009]
17. Mura, S., C. Cappai, G.F. Greppi, S. Barzaghi, A. Stellari and T.M.P. Cattaneo. 2019. Vibrational spectroscopy and Aquaphotomics holistic approach to determine chemical compounds related to sustainability in soil profiles. Computers and Electronics in Agriculture, 159(2019): 92-96. [
DOI:10.1016/j.compag.2019.03.002]
18. Ogen, Y., J. Zaluda, N. Francos, N. Goldshleger and E. Ben-Dor. 2019. Cluster-based spectral models for a robust assessment of soil properties, Geoderma, 340(2019): 175-184. [
DOI:10.1016/j.geoderma.2019.01.022]
19. Ostovari, Y., S. Ghorbani-Dashtaki, H.A. Bahrami, M. Abbasi, J.A.M. Dematte, E. Arthur and P. Panagos. 2018. Towards prediction of soil erodibility, SOM and CaCO 3 using laboratory Vis-NIR spectra: A case study in a semi-arid region of Iran. Geoderma, 314: 102-112. [
DOI:10.1016/j.geoderma.2017.11.014]
20. Padarian, J., B. Minasny and A.B. McBratney. 2019. Using deep learning to predict soil properties from regional spectral data. Geoderma Regional, 16: e00198. [
DOI:10.1016/j.geodrs.2018.e00198]
21. Peng, L., H. Cheng, L.J. Wang and D. Zhu. 2020. Comparisons the prediction results of soil properties based on fuzzy c-means clustering and expert knowledge from laboratory Vis-NIR spectroscopy data. Canadian Journal of Soil Science, 101(1):33-44. [
DOI:10.1139/cjss-2020-0025]
22. Pietrzykowski, M. and M. Chodak. 2014. Near infrared spectroscopy-A tool for chemical properties and organic matter assessment of afforested mine soils. Ecological Engineering, 62 (2014): 115-122. [
DOI:10.1016/j.ecoleng.2013.10.025]
23. Qi, F., R. Zhang, X. Liu, Y. Niu, H. Zhang, H. Li, J. Li, B. Wang and G. Zhang. 2018. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil and Tillage Research, 184: 45-51. [
DOI:10.1016/j.still.2018.06.011]
24. Rawlins, B.G., S.J. Kemp and A.E. Milodowski. 2011. Relationships between particle size distribution and VNIR reflectance spectra are weaker for soils formed from bedrock compared to transported parent materials. Geoderma, 166(2011): 84-91. [
DOI:10.1016/j.geoderma.2011.07.015]
25. Santana, F.B., L.O. Giuseeppe, A.M. Souza and R.J. Poppi. 2019. Removing the moisture effect in soil organic matter determination using NIR spectroscopy and PLSR with external parameter orthogonalization. Microchemical Journal, 145(2019): 1094-1101. [
DOI:10.1016/j.microc.2018.12.027]
26. Small, C., M. Steckler, L. Seeber, S.H. Akhter, Jr.S. Goodbred, B. Mia and B. Imam. 2009. Spectroscopy of sediments in the Ganges-Brahmaputra delta: Spectral effects of moisture, grain size and lithology, Remote Sensing of Environment, 113(2009): 342-361. [
DOI:10.1016/j.rse.2008.10.009]
27. Sorenson, P.T., S.A. Quideau and B. Rivard. 2018. High resolution measurement of soil organic carbon and total nitrogen with laboratory imaging spectroscopy. Geoderma, 315: 170-177. [
DOI:10.1016/j.geoderma.2017.11.032]
28. Stenberg, B., R.A. Viscarra Rossel, A.M. Mouazen and J. Wetterlind. 2010. Visible and near infrared spectroscopy in soil science. Advances in Agronomy, 107: 163-215. [
DOI:10.1016/S0065-2113(10)07005-7]
29. Summers, D., M. Lewis, B. Ostendorf and D. Chittleborough. 2011. Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecological Indicators, 11(2011): 123-131. [
DOI:10.1016/j.ecolind.2009.05.001]
30. Xu, D., W. Ma, S. Chen, Q. Jiang, K. He and Z. Shi. 2018a. Assessment of important soil properties related to Chinese Soil Taxonomy based on vis-NIR reflectance spectroscopy. Computers and Electronics in Agriculture, 144: 1-8. [
DOI:10.1016/j.compag.2017.11.029]
31. Xu, S., Y. Zhao, M. Wang and X. Shi. 2018b. Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis-NIR spectroscopy. Geoderma, 310: 29-43. [
DOI:10.1016/j.geoderma.2017.09.013]
32. Zeng, R., D.G. Rossiter, F. Yang, D.C. Li, Y.G. Zhao and G.L. Zhang. 2017. How accurately can soil classes be allocated based on spectrally predicted physio-chemical properties? Geoderma, 303(2017): 78-84. [
DOI:10.1016/j.geoderma.2017.05.011]
33. Zhao, L., H. Hong, Q. Fang, T.J. Algeo, C. Wang, M. Li and K. Yin. 2020. Potential of VNIR spectroscopy for prediction of clay mineralogy and magnetic properties, and its paleoclimatic application to two contrasting Quaternary soil deposits. Catena, 184(2020): 104239. [
DOI:10.1016/j.catena.2019.104239]