1. Alpert, M.I. 1971. Identification of determinant attributes: A comparison of methods. Journal of Marketing Research, 8(5): 184-191. [
DOI:10.1177/002224377100800205]
2. Arabjazi, N., M. Rostamy Malkhalifeh, F. Hosseinzadeh Lotfi and M. Behzadi. 2021. Stochastic sensitivity analysis in data envelopment analysis. Fuzzy Optimization and Modelling Journal, 2(4): 52-64.
3. Armacost, R.L and J.C. Hosseini. 1994. Identification of determinant attributes using the analytic hierarchy process. Journal of the Academy of Marketing Science, 22(4): 383- 392. [
DOI:10.1177/0092070394224007]
4. Athari, Z., G. Pezeshki Rad, E. Abbasi and A. Alibaygi. 2017. Technical report, challenges facing watershed management in Iran by using Delphi technique. Journal of Watershed Management Research, 8(15): 268-279 (In Persian).
5. Azar, A. 2015. operations research (implications and applications of linear planning). Samt press, Tehran, Iran, 712 pp (In Persian).
6. Azar, A. and H. Faraji. 2016. Science of fuzzy management, Mehraban press, Tehran, Iran, 408 pp (In Persian).
7. Barron, H. and C.P. Schmidt. 1988. Sensitivity analysis of additive multi-attribute value models. Operations Research, 36(1):122-127. [
DOI:10.1287/opre.36.1.122]
8. Chen, Y., J. Yu and S. Khan. 2010. Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environmental Modelling & Software, 25(12): 1582-1591. [
DOI:10.1016/j.envsoft.2010.06.001]
9. Delgado, M.G and J.B. Sendra. 2004. Sensitivity Analysis in Multicriteria Spatial Decision-Making: A Review. Human and Ecological Risk Assessment, 10(6): 1173-1187. [
DOI:10.1080/10807030490887221]
10. Ebrahimnejad, A. 2011. Sensitivity analysis in fuzzy number linear programming problems. Mathematical and Computer Modelling, 53(9-10): 1878-1888. [
DOI:10.1016/j.mcm.2011.01.013]
11. Evans, J.R. 1984. Sensitivity analysis in decision theory. Decision Sciences, 1(15): 239-247. [
DOI:10.1111/j.1540-5915.1984.tb01211.x]
12. Eldrandaly, K. A. N. Eldin., D. Sui., M. Shouman and G. Nawara. 2005. Integrating GIS and MCDM using COM technology. International Arab Journal of Information Technology, 2(2):162-167.
13. Farhadinia, A.B. 2014. Sensitivity analysis in interval-valued trapezoidal fuzzy number linear programming problems. Applied Mathematical Modelling, 38(1): 50-62. [
DOI:10.1016/j.apm.2013.05.033]
14. Fuller, R. 1989. On stability in fuzzy linear programming problems, Fuzzy Sets and Systems, 30(3): 339-344. [
DOI:10.1016/0165-0114(89)90026-2]
15. Gharachelo, S., M.R. Ekhtesasi, M. Zareian Jahromi and M.B. Samadi. 2010. Evaluation of current condition of desertification using I.C.D Model, case study: Khezrabad, Yazd. Iranian Journal of Range and Desert Research, 17(3): 402-420 (In Persian).
16. Gharechaee, H., A. Nazari Samani, S. Khalighi Sigarudi, A. Fathabadi and K.A. Alee. 2020. Assessing the factors affecting the salinity risk of groundwater using data mining and statistical methods in arid and semi-arid regions. Degradation and Rehabilitation of Natural Land, 1(1): 45-60 (In Persian).
17. Hamacher, H., H. Leberling and H.J. Zimmermann. 1978. Sensitivity analysis in fuzzy linear programming, Fuzzy Sets and Systems, 1(4): 269-281. [
DOI:10.1016/0165-0114(78)90018-0]
18. Hyde, K.M. 2006. Uncertainty analysis methods for multi-criteria decision analysis. School of Civil and Environmental Engineering. Ph.D Thesis. University of Adelaide, School of Civil and Environmental Engineering, Adelaide, Australia, 395 pp.
19. Hyde, K.M., H.R. Maier and C.B. Colby. 2005. A distance-based uncertainty analysis approach to multi-criteria decision analysis for water resource decision making. Journal of Environmental Management, 77(4): 278-290. [
DOI:10.1016/j.jenvman.2005.06.011]
20. Ivanco, M. 2015. Development of analytical sensitivity analysis for AHP applications. Master Thesis. Old Dominion University, Norfolk, Virginia, United State of America.
21. Kahraman, C., I. Kaya and S. Cebi. 2009. A comparative analysis for multi-attribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process. Energy, 34 (10):1603-1616. DOI: 10.1016/j.energy.2009.07.008 [
DOI:10.1016/j.energy.2009.07.008]
22. Khalili-Damghani, K. and B. Taghavifard. 2013. Sensitivity and stability analysis in two-stage DEA models with fuzzy data. International Journal of Operational Research, 17(1): 1-37. [
DOI:10.1504/IJOR.2013.053186]
23. Maleki, H.R., M. Tata and M. Mashinchi. 2000. Linear programming with fuzzy variables, Fuzzy Sets and Systems, 109(1): 21-33. [
DOI:10.1016/S0165-0114(98)00066-9]
24. Masuda, T. 1990. Hierarchical sensitivity analysis of the priorities used in the Analytic Hierarchy Process. Systems Science, 21(2): 415-427. [
DOI:10.1080/00207729008910371]
25. Mehregan, M.R. 2020. Operational research (linear programming and its applications). Markaze Nashre Daneshgahi Publication, 524 pp.
26. Mohamadi, S. 2018. Prioritization of sub-catchments for operation of watershed management projects via Multi-Criteria Decision Making Techniques, case study: Asyabjofeth Watershed), Journal of Watershed Management Research, 10(18): 36-46 (In Persian). [
DOI:10.29252/jwmr.9.18.36]
27. Pamucar. D.S., D. Bozanic and A. Randelovic. 2017. Multi-criteria decision making: An example of sensitivity analysis. Serbian Journal of Management, 12(1): 1-27. [
DOI:10.5937/sjm12-9464]
28. Pascual, N.R., R.M. Krug, D.M. Richardson and C. Hui. 2010. Spatially-explicit sensitivity analysis for conservation management: exploring the influence of decisions in invasive alien plant management. Diversity and Distributions, 16(3): 426-438. [
DOI:10.1111/j.1472-4642.2010.00659.x]
29. Rashnavadi, Y. and M.A. Rouhollahi. 2018. Technology strategic planning model in petrochemical industry using the Network Analysis Process: Case Study of Iranian Petrochemical Industry. Strategic Management Researches, 24(68): 37-63.
30. Ringuest, J.L. 1997. Lp-metric sensitivity analysis for single and multi-attribute decision analysis. European Journal of Operational Research. 98(3): 563-570. [
DOI:10.1016/S0377-2217(96)00177-4]
31. Ríos Insua, D. 1990. Sensitivity analysis in multi-objective decision making. Lecture Notes in Economics and Mathematical Systems, Springer-Verlag Press, Berlin, Germany, 186 pp. [
DOI:10.1007/978-3-642-51656-6]
32. Saaty, T.L. 2012. Decision making for leaders: The Analytic Hierarchs Process for Decision in a complex world. Rws Publications, Pittsburgh, United States of America, 323 pp.
33. Sadeghiravesh, M.H. 2022. Application of fuzzy logic in quantitative analysis of combat-desertification alternatives with pathological approach. Desert Ecosystem Engineering Journal (DEEJ), 15(34): 15-32 (In Persian)
34. Sadeghi Ravesh, M.H. 2021. Analysis of the combating desertification alternatives derived from the decision-making models using the GRV function. Degradation and Rehabilitation of Natural Land, 1(2): 13-25 (In Persian).
35. Sadeghiravesh, M.H. and H. Khosravi. 2021. Quantitative analysis of combating desertification alternatives using LINMAP model in Lingo software environment. Desert Management, 8(16): 57-76 (In Persian).
36. Sadeghiravesh, M.H., H. Khosravi and S. Ghasemian. 2015. Application of Fuzzy Analytical Hierarchy Process (FAHP) for Assessment of combating-desertification alternatives in the central Iran. Journal of Natural Hazard, 75: 653-667. [
DOI:10.1007/s11069-014-1345-7]
37. Saltelli, A., K. Chan and E.M. Scott. 2009. Sensitivity Analysis. John Wiley and Sons Ltd, Chichester, England, 504 pp.
38. Sharifi, M. and Z. Farahbakhsh. 2016. Investigation about temperature and humidity anomalies between pleistocene and present times; reconstruction of climate condition using geomorphic evidence: case study: Khezrabad-Yazd. Physical Geography Researches, 47(4): 583-605 (In Persian).
39. Sindhu, S.P., V. Nehra and S. Luthra. 2016. Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian Outlook. Energy, 100: 332-48. DOI: 10.1016/j.energy.2016.01.091. [
DOI:10.1016/j.energy.2016.01.091]
40. Sindhu, S.P., V. Nehra and S. Luthra. 2017. Investigation of feasibility study of solar farms deployment using Hybrid AHP-TOPSIS analysis: case study of India. Renewable and Sustainable Energy Reviews, 73(c): 496-511. DOI: 10.1016/j.rser.2017.01.135. [
DOI:10.1016/j.rser.2017.01.135]
41. Tabatabaei, S.M., M.J. zeynali and B.S. Hamraz. 2021. Prioritization of strategic policies for water right harvesting of iranian boundary rivers by AHP and ANP method. Iranian Water Research Journal. 14)4(: 39-51 (In Persian).
42. Triantaphyllou, E. 1992. A sensitivity analysis of a (Ti, Si) inventory policy with increasing demand. Operations Research Letters, 11(3): 167-172. [
DOI:10.1016/0167-6377(92)90081-D]
43. Triantaphyllou, E. and C.T. Lin. 1996. Development and evaluation of five fuzzy multi-attribute decision-making methods. International Journal of Approximate Reasoning, 14(4): 281-310. [
DOI:10.1016/0888-613X(95)00119-2]
44. Triantaphyllou, E. and A. Sanchez. 1997. A sensitivity analysis approach for some deterministic multi-criteria decision-making methods. Decision Sciences, 28(1): 151-194. [
DOI:10.1111/j.1540-5915.1997.tb01306.x]
45. United Nations Convention to Combat Desertification (UNCCD). 2017. The global land outlook. UNCCD press, Bonn, Germany, 340 pp.
46. Von Winterfeldt, D. and W. Edwards.1986. Decision analysis and behavioral research. Cambridge University Press, Cambridge, United Kingdom, 624 pp.
47. Watson, S. and D. Buede. 1987. Decision synthesis. Cambridge University Press, Cambridge, United Kingdom , 373 pp.
48. Wendel, R.E. 2007. Sensitivity analysis revisited and extended, Decision Sciences, 23(5): 1127-1142. [
DOI:10.1111/j.1540-5915.1992.tb00439.x]
49. Winebrake, J.J. and B.P. Creswick. 2003. The future of hydrogen fueling systems for transportation: An application of perspective-based scenario analysis using the analytic hierarchy process. Technological Forecasting and Social Change, 70(4): 359-84. [
DOI:10.1016/S0040-1625(01)00189-5]
50. Zimmermann, H.J. 1976. Description and optimization of fuzzy systems, International Journal of General Systems, 2(4): 209-215. [
DOI:10.1080/03081077608547470]