1. Baede, A. P., Ahlonsou, E., Ding, Y., & Schimel, D. S. (2001). The climate system: an overview. Climate Change 2001: impacts, adaptation and vulnerability, 87-98.
2. Change, I. C. (2007). The Physical Science Basis. Final Report Working Group 1, Intergovernmental Panel on Climate Change, Assessment Report 4, Geneva, Swiss (2007).
3. Chen, H., & Sun, J. (2015). Assessing model performance of climate extremes in China: an intercomparison between CMIP5 and CMIP3. Climatic Change, 129, 197-211. [
DOI:10.1007/s10584-014-1319-5]
4. Davarpanah, S., Erfanian, M., & Javan, K. (2021). Assessment of climate change impacts on drought and wet spells in Lake Urmia Basin. Pure and Applied Geophysics, 178(2), 545-563. [
DOI:10.1007/s00024-021-02656-8]
5. Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937-1958. [
DOI:10.5194/gmd-9-1937-2016]
6. Fallah Kalaki, M., Shokri Kuchak, V., & Ramezani Etedali, H. (2021). Simulating the effects of climate change on runoff using the CMIP5 and CMIP6 climate models by SWAT hydrological model (Case study: Tashk-Bakhtegan Basin). Iran-Water Resources Research, 17(3), 345-359.
7. Fung, C. F., Lopez, A., & New, M. (Eds.). (2011). Modelling the impact of climate change on water resources. John Wiley & Sons. [
DOI:10.1002/9781444324921]
8. Goodarzi, M., Hoseini, M., & Parekar, M. (2017). Evaluation of Statistical downscaling method in simulation of climate change of Karkheh basin up to the Karkheh dam. Iranian Journal of Watershed Management Science and Engineering, 10(35), 51-64.
9. Goodarzi, M., Hosseini, S.A., & Mesgari, E. (2017). Climate Models. Azarlak Press, Zanjan, Iran, 272 pp (In Persian).
10. Gulacha, M. M., & Mulungu, D. M. (2017). Generation of climate change scenarios for precipitation and temperature at local scales using SDSM in Wami-Ruvu River Basin Tanzania. Physics and Chemistry of the Earth, Parts A/B/C, 100, 62-72. [
DOI:10.1016/j.pce.2016.10.003]
11. Gupta, V., Singh, V., & Jain, M. K. (2020). Assessment of precipitation extremes in India during the 21st century under SSP1-1.9 mitigation scenarios of CMIP6 GCMs. Journal of Hydrology, 590, 125422. [
DOI:10.1016/j.jhydrol.2020.125422]
12. Hasirchian, M., Zahabiyoun, B., & Khazaei, M. R. (2019). Assessment of SDSM model performance to investigate the effect of climate change on precipitation and temperature. Irrigation and Water Engineering, 9(2), 108-120.
13. Hemmati, L., & Miryaghoubzadeh, M. (2021). Forecasting of climate variables in future periods based on HadCM3 Data using statistical downscaling model (SDSM) in Agh-Chay Basin (West Azarbayjan). Journal of Watershed Management Research, 12(23), 95-107. [
DOI:10.52547/jwmr.12.23.95]
14. Jolliffe, I. T., & Stephenson, D. B. (Eds.). (2012). Forecast verification: a practitioner's guide in atmospheric science. John Wiley & Sons. [
DOI:10.1002/9781119960003]
15. Kermani, R.M., & Tourin, N. (2012). Maximum، minimum and average temperature prediction using Nero fuzzy algorithm at Kerman station. 5th National Conference of Watershed Management and Soil and Water Resources Management, 13 pp.
16. Kim, J. W., Chang, J. T., Baker, N. L., Wilks, D. S., & Gates, W. L. (1984). The statistical problem of climate inversion: Determination of the relationship between local and large-scale climate. Monthly weather review, 112(10), 2069-2077.
https://doi.org/10.1175/1520-0493(1984)112<2069:TSPOCI>2.0.CO;2 [
DOI:10.1175/1520-0493(1984)1122.0.CO;2]
17. Kim, S., Kim, B. S., Jun, H., & Kim, H. S. (2014). Assessment of future water resources and water scarcity considering the factors of climate change and social-environmental change in Han River basin, Korea. Stochastic environmental research and risk assessment, 28, 1999-2014. [
DOI:10.1007/s00477-014-0924-1]
18. Kundu, S., Khare, D., & Mondal, A. (2017). Interrelationship of rainfall, temperature and reference evapotranspiration trends and their net response to the climate change in Central India. Theoretical and Applied Climatology, 130, 879-900. [
DOI:10.1007/s00704-016-1924-5]
19. Mahmood, R., & Babel, M. S. (2014). Future changes in extreme temperature events using the statistical downscaling model (SDSM) in the trans-boundary region of the Jhelum river basin. Weather and Climate Extremes, 5, 56-66. [
DOI:10.1016/j.wace.2014.09.001]
20. Mohamadi, S., Ghazanfari, S., & Abkar, A. (2020). Prediction of Rainfall under HadCM3 and CanESM2 Climate Change Models using Statistical Downscaling Model (Case Study: Tabriz Synoptic Station). Journal of Watershed Management Research, 11(22), 220-232. [
DOI:10.52547/jwmr.11.22.220]
21. Mortazavifar, S. M., Mobin, M. H., Mokhtari, M. H., Ekrami, M., & Rfiei Sardoii, E. (2019). Evaluation of the impact of climate change on precipitation and temperature variables based on the RCP scenarios: A case study of the east of Mazandaran Province, Iran. Journal of Meteorology and Atmospheric Science, 1(4), 351-364. [
DOI:10.1155/2019/6848049]
22. Noguer, M., Van der Linden, P. J., Dai, X., Maskell, K., & Johnson, C. A. (2001). Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change.
23. Roshani, A., & Hamidi, M. (2022). Forecasting the effects of climate change scenarios on temperature & precipitation based on CMIP6 models (Case study: Sari station). Water and Irrigation Management, 11(4), 781-795.
24. Shaemi, A., & Habibinokhandan, M. (2009). Global warming and bio-ecological consequences. Ferdowsi University of Mashhad publication, Mashhad, Iran.
25. Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., ... & Rose, S. K. (2011). The representative concentration pathways: an overview. Climatic change, 109, 5-31. [
DOI:10.1007/s10584-011-0148-z]
26. Vermeer, M., & Rahmstorf, S. (2009). Global sea level linked to global temperature. Proceedings of the national academy of sciences, 106(51), 21527-21532. [
DOI:10.1073/pnas.0907765106]
27. Wilby, R. L., & Harris, I. (2006). A framework for assessing uncertainties in climate change impacts: Low‐flow scenarios for the River Thames, UK. Water Resources Research, 42(2). [
DOI:10.1029/2005WR004065]
28. Wilby, R. L., Dawson, C. W., & Barrow, E. M. (2002). SDSM-a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17(2), 145-157. [
DOI:10.1016/S1364-8152(01)00060-3]
29. Wilby, R.L. and W.C. Dawson. 2007. SDSM 4.2- A decision support tool for the assessment of regional climate change impacts، SDSM manual version 4.2. Environment Agency of England and Wales. 94 pp.
30. Ye, L., & Grimm, N. B. (2013). Modelling potential impacts of climate change on water and nitrate export from a mid-sized, semiarid watershed in the US Southwest. Climatic change, 120, 419-431. [
DOI:10.1007/s10584-013-0827-z]
31. Zahabioun, B., Goudarzi, M. R., & Msahbovani, A. (2010). Application of SWAT model for estimating runoff in future periods affected by climate change. Journal of Climatology, 43-58.
32. Zarrin, A., Dadashi-rodbari, A., & Salehabadi, N. (2021). Projected temperature anomalies and trends in different climate zones in Iran based on CMIP6. Iranian Journal of Geophysics, 15(1), 35-54.
33. Zhang, A., Zhang, C., Fu, G., Wang, B., Bao, Z., & Zheng, H. (2012). Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, Northeast China. Water resources management, 26, 2199-2217. [
DOI:10.1007/s11269-012-0010-8]