دوره 14، شماره 27 - ( بهار و تابستان 1402 )                   جلد 14 شماره 27 صفحات 102-86 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tavosi T, Shoja F, Hossein Abady N. (2023). Evaluation of the Future Changes of Climatic Aridity Indices in the Central Iran Watershed under Climate Change Scenarios. J Watershed Manage Res. 14(27), 86-102. doi:10.61186/jwmr.14.27.86
URL: http://jwmr.sanru.ac.ir/article-1-1203-fa.html
طاوسی تقی، شجاع فائزه، حسین ابادی نسرین. واکاوی تغییرات آتی شاخص های خشکی اقلیمی در آبخیز ایران مرکزی تحت سناریوهای تغییر اقلیم پ‍‍ژوهشنامه مديريت حوزه آبخيز 1402; 14 (27) :102-86 10.61186/jwmr.14.27.86

URL: http://jwmr.sanru.ac.ir/article-1-1203-fa.html


1- دانشکده جغرافیا و برنامه ریزی محیطی دانشگاه سیستان و بلوچستان
2- دانشکده جغرافیا-دانشگاه تهران
چکیده:   (1682 مشاهده)
چکیده مبسوط
مقدمه و هدف: مسئله خشکی و بحران آب در فلات مرکزی ایران طی سال‌های اخیر بدلیل خشکسالی‌های متوالی و افزایش مصرف آب در بخش‌های شرب، کشاورزی و صنعت جدی شده است و از آنجاییکه در این آبخیز تنها منبع آب، بارش باران می‌باشد کاهش میزان بارش با این شدت، می‌تواند عامل وقوع یک خشکسالی وسیع و در نهایت مهاجرت‌های گسترده از این نواحی گردد. به­همین دلیل هدف پژوهش حاضر این است که تغییرات شاخص خشکی در پهنه وسیع آبخیز ایران مرکزی را در اقلیم در حال گذار آینده مورد واکاوی قرار دهد.
مواد و روش‌ها: برای رسیدن به­هدف پژوهش نخست، پارامترهای اقلیمی کمینه و بیشینه دمای هوا، ساعات آفتابی و بارش 40 ایستگاه همدید در آبخیز مرکزی ایران برای بازه زمانی 20 ساله (2010-1991) از سازمان هواشناسی کشور دریافت شد. سپس مقدار تبخیر-تعرق پتانسیل، شاخص خشکی و شاخص بارندگی انگوت به تفکیک هر ایستگاه در شرایط فعلی محاسبه گردید. به‌منظور پیش‌نگری تغییرات شاخص خشکی در چشم‌انداز آینده نیز برونداد سه مدل MIROC5، HadGEM2-ES و GFDL-CM3 برای دوره تاریخی (2010-1991) و آینده میانی (2060-2041) تحت سناریوی واداشت تابشی RCP4.5، بر پایه مولد تصادفی LARS-WG6 ریزمقیاس‌نمایی گردید و پس از ارزیابی دقت مدل‌ها در مقابل داده‌های مشاهداتی مقادیر شاخص‌های مورد نظر در شرایط آینده محاسبه و نقشه‌های پهنه‌بندی منطقه مطالعاتی ترسیم شد.
یافته‌ها: پیش‌نگری تغییرات درصد تبخیر و تعرق تحت سناریوی RCP4.5 در دوره (2060-2041) نشان داد که بیشترین تغییر مربوط به ماه‌های ژانویه، مارس، دسامبر و نوامبر بوده که در این میان، شهرکرد با 36/8 درصد تغییر در ژانویه نسبت به دوره پایه بیشترین درصد تغییرات افزایشی را به خود اختصاص داده است. از لحاظ رژیم بارشی آبخیز فلات مرکزی مبتنی بر شاخص بارندگی انگوت در شرایط فعلی رژیم بارش از نوع زمستانه داشته که در مدل HadGEM2-ES با دوره پایه همخوانی دارد اما براساس مدل‌های MIROC5 و GFDL-CM3 نوع بارش زمستانه حال حاضر در تعداد زیادی از ایستگاه‌ها، به رژیم بارشی همه فصول در آینده تغییر شکل پیدا خواهد کرد. پهنه‌بندی اقلیمی حوضه مورد مطالعه براساس شاخص خشکی یونپ نیز نشان داد که در شرایط کنونی بیش از نیمی از ایستگاه‌ها دارای اقلیم خشک هستند و تنها کوهرنگ با شاخص خشکی 0/78 دارای اقلیم مرطوب و شمیرانات و الیگودرز به ترتیب با ضریب خشکی 0/21 و 0/20 شرایط نیمه خشک دارند. واکاوی شرایط اقلیمی آینده مطابق مدل GFDL-CM3، گویای این مهم است که نوع اقلیم مرطوب در حوضه مرکزی به تدریج مضمحل خواهد شد در صورتی که اقلیم فراخشک در سطح این حوضه گسترش بیشتری پیدا خواهد کرد. برونداد حاصل از مدل MIROC5 نیز نشان دهنده پیشروی ناحیه آب و هوایی فراخشک در قسمت‌های مختلف آبخیز ایران مرکزی است.
نتیجه‌گیری: نتایج نشان داد مقادیر به‌دست آمده از شاخص خشکی برمبنای مدل‌های GCM منتخب در حوضه‌ مورد مطالعه نسبت به دوره مشاهداتی کاهش پیدا کرده و بنابراین تعداد زیادی از ایستگاه‌ها با شرایط خشک فعلی، در اقلیم آتی وضعیت فراخشک را تجربه خواهند کرد. این مسئله با توجه به روند افزایشی تبخیر-تعرق پتانسیل در سطح حوضه ایران مرکزی طی همه ماه‌های سال به‌خصوص در ایستگاه‌های مرطوب واقع در غرب، نشان از حاکمیت پدیده خشکی بر این منطقه در شرایط آینده دارد.


 
متن کامل [PDF 3355 kb]   (482 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: بلايای طبيعی (سيل، خشکسالی و حرکت های توده ای)
دریافت: 1401/5/21 | پذیرش: 1401/9/29

فهرست منابع
1. Aghajanlou, M.B., J. Jafari and A. Sabzi Parvar. 2013. Investigat ing the possible effects of climate change on the aridity index in Iran, under scenario A2. the second regional conference on climate change and global warming, Zanjan (In Persian).
2. Ahmadpari, H., M. safavi gerdini and M. Ebrahimi. 2019. An appropriate method for estimating potential evapotranspiration in the absence of meteorological data (The case study of Khorrambid Township in Fars Province). Land Management Journal, 7(2): 223-230 (In Persian).
3. Ahmed, K., D.A. Sachindra, S. Shahid, Z. Iqbal, N. Nawaz and N. Khan. 2020. Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms. Atmospheric Research, 236: 104806. [DOI:10.1016/j.atmosres.2019.104806]
4. Amani, Z., R. Deihimfard and A. Mokhtassi Bidgoli. 2016. Evalution of drought under increasing of temperature due to climate change in rainfed wheat-growing areas of Fars province using Aridity Index. Journal of Crop Production, 9(2): 151-174 (In Persian).
5. Amiri, M. and H.R. Pourghasemi. 2019. Comparing Different Methods of Potential Evapotranspiration and Studying Temporal and Spatial Changes in the Mahalou Watershed using GIS. Journal of Watershed Management Research, 10(19): 22-35 (In Persian). [DOI:10.29252/jwmr.10.19.22]
6. An, S., G. Park, H. Jung and D. Jang .2022. Assessment of Future Drought Index Using SSP Scenario in Rep. of Korea. Sustainability, 14(7): 4252. [DOI:10.3390/su14074252]
7. Aref, M. and B. Alijani. 2018. Investigation of temperature and precipitation variations of Yazd-Ardakan basin with SDSM under the conditions of future climate change. Journal of Arid Biome, 8(1):89-101 (In Persian). [DOI:10.29252/aridbiom.8.1.89]
8. Arias, P.A., G. Ortega, L.D. Villegas and J.A. Martínez. 2021. Colombian climatology in CMIP5/CMIP6 models: Persistent biases and improvements. Revista Facultad de Ingeniería Universidad de Antioquia, (100): 75-96. [DOI:10.17533/udea.redin.20210525]
9. Bakhtiari, B., N. Mahdavi and N. Sayari .2021. Variations and Sensitivity Analysis on Aridity Index (AI) in Some Climate Samples in Iran. Iran-Water Resources Research, 17(1): 1-15 (In Persian).
10. Barzegari, F. and H. Malekynejhad. 2015. Linear Moments Application in Drought Prediction (Case Study: Central Catchment of Iran), Water and Soil Science, 25(2): 13-23 (In Persian).
11. Chai, R., J. Mao, H. Chen, Y. Wang, X. Shi, M. Jin and S.D. Wullschleger. 2021. Human-caused long-term changes in global aridity. Climate and Atmospheric Science, 4(1): 1-8. [DOI:10.1038/s41612-021-00223-5]
12. Danesh Faraz, R. and H. Razzakpour. 2014. Assessment of climate change effects on potential evaporation and transpiration in West Azarbaijan province. Geographical Space, [online] 14(46): 199-211 (In Persian).
13. Darvishi, Y. and M. Ghadamkheir. 2021. Assessing and Analyzing the Effects of Climate Drought Using Tavosi Monthly Drought, Ingot (K) and UNEP Indices (UNEP) (Case study: cities of Golestan province). Climate Change Research, 2(7): 49-70 (In Persian).
14. Dash, S.S., B. Sahoo and N.S. Raghuwanshi. 2019. A SWAT-Copula based approach for monitoring and assessment of drought propagation in an irrigation command. Ecological Engineering, 127: 417-430. [DOI:10.1016/j.ecoleng.2018.11.021]
15. Donohue, R.J., T.R. McVicar and M.L. Roderick .2010. Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. Journal of Hydrology, 386(1-4): 186-197. [DOI:10.1016/j.jhydrol.2010.03.020]
16. Dumitraşcu, M., C.S. Dragotă, I. Grigorescu, C. Dumitraşcu and A. Vlăduţ. 2017. Key pluvial parameters in assessing rainfall erosivity in the south-west development region, Romania. Journal of Earth System Science, 126(4): 1-17. [DOI:10.1007/s12040-017-0834-y]
17. Feng, S. and Q. Fu. 2013. Expansion of global drylands under a warming climate. Atmospheric Chemistry and Physics, 13(19): 10081-10094. [DOI:10.5194/acp-13-10081-2013]
18. Foroghi, M., Y. Dinpashoh and S. Jahanbakhsh Asl .2020. Impact of Climate Change on Reference Crop Evapotranspiration Trends in the west rejoin of Iran. Journal of Climate Research, 1398(37): 21-37 (In Persian).
19. Fu, C.B. and Z.G. Ma. 2008. Global change and regional aridification. Journal of Atmospheric Sciences, 32(4): 752-760.
20. Fu, Q. and S. Feng. 2014. Responses of terrestrial aridity to global warming. Journal of Geophysical Research: Atmospheres, 119(13): 7863-7875. [DOI:10.1002/2014JD021608]
21. Fu, Q., L. Lin, J. Huang, S. Feng and A. Gettelman. 2016. Changes in terrestrial aridity for the period 850-2080 from the Community Earth System Model. Journal of Geophysical Research: Atmospheres, 121(6): 2857-2873. [DOI:10.1002/2015JD024075]
22. Gavrilov, M.B., T. Lukić, N. Janc, B. Basarin and S.B. Marković. 2019. Forestry Aridity Index in Vojvodina. North Serbia. Open Geosciences, 11(1): 367-377. [DOI:10.1515/geo-2019-0029]
23. Goudarzi, M., B. Salahi and S.A. Hosseini. 2018. Estimation of Evapotranspiration Rate Due to Climate Change in the Urmia Lake Basin. Jwmseir, 12(41): 1-12 (In Persian).
24. Greve, P., M.L. Roderick, A.M. Ukkola and Y. Wada. 2019. The aridity index under global warming. Environmental Research Letters, 14(12): 124006. [DOI:10.1088/1748-9326/ab5046]
25. Hadi, F., A. khashei siuki, A. Shahidi and M. Farzaneh. 2016. Examination the Effect of Climate Change on Potential Evapotranspiration in Different Climates. Iranian Journal of Irrigation & Drainage, 10(2): 230-240 (In Persian).
26. Hailesilassie, W.T., N.K. Goel, T. Ayenew and S. Tekleab. 2022. Future precipitation changes in the Central Ethiopian Main Rift under CMIP5 GCMs. Journal of Water and Climate Change, 13(4): 1830-1841. [DOI:10.2166/wcc.2022.440]
27. Hargreaves, G.H. and Z.A. Samani. 1985. Reference crop evapotranspiration from temperature. Transaction of ASAE, 1(2): 96-99. [DOI:10.13031/2013.26773]
28. Heydari Tasheh Kaboud, Sh. and Y. Khoshkhou .2019. Projection and Prediction of the Annual and Seasonal Future Reference Evapotranspiration Time Scales in the West of Iran Under Rcp Emission Scenarios. Journal of Geographical Sciences, 19(53): 157 -176 (In Persian). [DOI:10.29252/jgs.19.53.157]
29. Hosseinizadeh, A., H. SeyedKaboli, H. Zareie, A. Akhondali and B. Farjad .2015. Impact of climate change on the severity, duration, and frequency of drought in a semi-arid agricultural basin. Geoenvironmental Disasters, 2(1): 1-9 (In Persian). [DOI:10.1186/s40677-015-0031-8]
30. Houmsi, M.R., M.S. Shiru, M.S. Nashwan, K. Ahmed, G.F. Ziarh, S. Shahid and S. Kim .2019. Spatial shift of aridity and its impact on land use of Syria. Sustainability, 11(24): 7047. [DOI:10.3390/su11247047]
31. Huang, J., H. Yu, X. Guan, G. Wang and R. Guo. 2016. Accelerated dryland expansion under climate change. Nature Climate Change, 6(2): 166-171. [DOI:10.1038/nclimate2837]
32. IPCC. 2007. Climate Change 2007. Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland: 104.
33. IPCC .2013. Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA:1535
34. Joorabloo, S., K. Azhdary, Z. Ganji and M. Delghandi. 2018. Climate Change Impact on Reference Evapotranspiration and Precipitation Deficit in Semnan Region. Irrigation Sciences and Engineering, 41(4): 61-75 (In Persian).
35. Karami, S. 2021. Re-Analyzing of Consequences and Methods of Climatological Changes Managements (Case Study: Iran's Central Basin). Journal of Applied Researches in Geographical Sciences, 20(59):19-37 (In Persian). [DOI:10.29252/jgs.20.59.19]
36. Khazaei, M., H. khazaee and B. saghafian. 2020. Climate Change Impact on Extreme Rainfalls in Arid Region of Iran. Journal of Environmental Science and Technology, 22(9): 31-42 (In Persian).
37. Lukić, T., T.M. Ponjiger, B. Basarin, D. Sakulski, M. Gavrilov, S. Marković and A. Petrović. 2021. Application of Angot precipitation index in the assessment of rainfall erosivity: Vojvodina Region case study (North Serbia). Acta Geographica Slovenica, 61(2): 123-153. [DOI:10.3986/AGS.8754]
38. Maria, A.L. and M.I.H.A.I.L.A. Dumitru. 2022. Application of the Angot (k) pluviometric index to Cotnari Weather Station in the period 1961-2020. Georeview: Scientific Annals of Stefan cel Mare University of Suceava. Geography Series, 32(1): 29-38.
39. Mazare, M.M., H. Kaviar and S. Kargar. 2017. Investigating the legal conditions of water boundaries in the central plateau of Iran and the effect of compliance with the legal boundaries in getting out of the water scarcity crisis, 7th Iranian National Water Resources Management Conference (In Persian).
40. Mohammadi Sedigheh M., S. Ghazanfari and A. Abkar. 2021. Prediction of Rainfall under HadCM3 and CanESM2 Climate Change Models using Statistical Downscaling Model (Case Study: Tabriz Synoptic Station). Journal of Watershed Management Research, 11(22): 220-232 (In Persian). [DOI:10.52547/jwmr.11.22.220]
41. Mostafazadeh, R., R. Asiabi-hir and S.S. Nabavi. 2023. Determining the variations of monthly wet and dry regimes using Angot index in Ardabil Province. Applied researches in Geographical Sciences, 23(69) (In Persian).
42. Nemati, A., S.H. Qureshi Najafabadi, Gh. Jodaki and S.S. Mousavi Nadushni. 2017. Investigating the spatio-temporal distribution and intensity of a widespread drought phenomenon in the Central Iran watershed using NASA's Gravitational Satellite (GRACE) and TSDI index, 16th Iranian Hydraulic Conference (In Persian).
43. Nikam, B.R., P. Kuma, V. Garg, P.K. Thakur and S.P. Aggarwal. 2014. Comparative evaluation of different potential evapotranspiration estimation approaches. International Journal of Research in Engineering and Technology, 3(6): 544-552. [DOI:10.15623/ijret.2014.0306102]
44. Nouri, M., M. Homaee and M. Bannayan. 2016. Assessing Trends of aridity index changes over 1966-2100 period in the Northwest of Iran. Watershed Engineering and Management, 8(4): 439-453c
45. Omidvar, K., N. Javanshiri and I. Babaian. 2013. Climate change survey in the period of 2011-2030 in the south of Kerman province using the exponential microscale GCM model. The first national hydrometeorological conference, Kerman (In Persian).
46. Racsko, P., L. Szeidl and M. Semenov. 1991. Serial approach to local stochastic weather models. Ecological modelling, (57): 27-41. [DOI:10.1016/0304-3800(91)90053-4]
47. Ramachandran, A., D. Praveen, R. Jaganathan and K. Palanivelu. 2015. Projected and observed aridity and climate change in the east coast of south India under RCP 4.5. The Scientific World Journal. [DOI:10.1155/2015/169761]
48. Ranjbar, F. and H. Tabatabaii .2022. Investigation of the trend of Aridity index in the northern stations of Iran during the period 1982-2019. Climate Change Research, 3(9): 12-24 (In Persian).
49. Salari Fanoodi, M., M. Khosravi., T. Tavousi and M. Hamidian Pour. 2020. Evaluation and comparison of the accuracy of the CORDEX database's summer precipitation network data with station data (Case study: summer precipitation of South East of Iran). Journal of Climate Research, 1399(43): 15-32 (In Persian).
50. Scheff, J. and D.M. Frierson. 2015. Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. Journal of Climate, 28(14): 5583-5600. [DOI:10.1175/JCLI-D-14-00480.1]
51. Soleimani Sardoo, F. and T. Mesbahzadeh. 2021. The Prediction of Temperature and Precipitation Using Climate Change Scenarios and Statistical Exponential Down scaling Models. Environmental Researches, 11(22): 97-110 (In Persian).
52. Song, Y.H., E.S. Chung and M.S. Shiru. 2020. Uncertainty analysis of monthly precipitation in GCMs using multiple bias correction methods under different RCPs. Sustainability, 12(18): 7508. [DOI:10.3390/su12187508]
53. Tabari, H. and M.B. Aghajanloo. 2013. Temporal pattern of aridity index in Iran with considering precipitation and evapotranspiration trends. International Journal of Climatology, 33(2): 396-409 (In Persian). [DOI:10.1002/joc.3432]
54. Tavosi, T., M. Mansouri Daneshvar and A. Movaqqari. 2012. The Zonation of Aridity Intensity in Iran Using Hargreaves- Samani Evapotranspiration Model Based on Digital Elevation Model (DEM). Geography and Environmental Sustainability, 2(3): 95-110 (In Persian).
55. Tavosi, T., F. shoja and E. Asgari. 2019. Amendment of Climate Zones of the Northeastern Iran Based On a Combination of Changes in Aridity Index. Desert Management, 7(13): 117-134 (In Persian).
56. Tavousi, T. 2018. Investigating the trend of fluctuations in annual precipitation and UNEP aridity index of climatic zones in the west and northwest of Iran. Scientific- Research Quarterly of Geographical Data (SEPEHR), 27(105): 85-96 (In Persian).
57. Tavousi, T., C. Kajehamiri Khaledi and M. Salari Fanoudi .2021. Review of Iran's Climatic Zoning Based on Some Climate Variables. Desert Management, 8(16): 17-36(In Persian).
58. Tsakiris, G. and H. Vangelis .2004. Towards a drought watch system based on spatial SPI. Water Resources Management, 18(1): 1-12. [DOI:10.1023/B:WARM.0000015410.47014.a4]
59. Wang, X., D. Jiang and X. Lang .2021. Future changes in Aridity Index at two and four degrees of global warming above preindustrial levels. International Journal of Climatology, 41(1): 278-294. [DOI:10.1002/joc.6620]
60. Wen, M., D.J. ChengSong, G. Zhang, W. Lai and W. Jiang. 2018. Impacts of climate change on aridity index and its spatiotemporal variation in the Loess Plateau of China, from 1961 to 2014. Environmental Earth Sciences, 77(4): 1-12. [DOI:10.1007/s12665-018-7304-y]
61. Zehtabian, G.R., A. Salajegheh, A. Malekian, N. Boroomand and A. Azareh. 2016. Evaluation and comparison of performance of SDSM and CLIMGEN models in simulation of climatic variables in Qazvin plain. Desert, 21(2): 155-164 (In Persian).

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb