1. Ahmadpour, A., S. Mirhashemi and P. Haghighat jou. 2020. Evaluation of Classical, Conceptual IHACRES and Hybrid ARMA-ANN Models in Simulation and Prediction of Daily Discharge of Maroun River. Iranian Journal of Soil and Water Research, 51(3): 727-736 (In Persian).
2. Ahooghalandari, M., M. Khiadani and G. Kothapalli. 2015. Assessment of Artificial Neural Networks and IHACRES models for simulating streamflow in Marillana catchment in the Pilbara, Western Australia. Australasian Journal of Water Resources, 19(2): 116-126. [
DOI:10.1080/13241583.2015.1116183]
3. Andrews, F.T., B.F.W. Croke and A.J. Jakeman. 2011. An open software environment for hydrological model assessment and development. Environmental Modelling & Software, 26(10): 1171-1185. [
DOI:10.1016/j.envsoft.2011.04.006]
4. Bashirgonbad, M. 2022. Rainfall-Runoff Modeling to Predict Maximum Daily Flow under Climate Change Conditions. Journal of Watershed Management Research, 13(26):115-124. [
DOI:10.52547/jwmr.13.26.115]
5. Box, G.E.P., G.M. Jenkins, G.C. Reinsel and G.M. Ljung. 2015. Time series analysis: forecasting and control. John Wiley & Sons.
6. Braddock, R.D., M.L. Kremmer and L. Sanzogni. 1998. Feed-forward artificial neural network model for forecasting rainfall run-off. Environmetrics, 9(4): 419-432.
https://doi.org/10.1002/(SICI)1099-095X(199807/08)9:4<419::AID-ENV312>3.0.CO;2-D [
DOI:10.1002/(SICI)1099-095X(199807/08)9:43.0.CO;2-D]
7. Carcano, E.C., P. Bartolini., M. Muselli and L. Piroddi. 2008. Jordan recurrent neural network versus IHACRES in modelling daily streamflows. Journal of Hydrology, 362(3-4): 291-307. [
DOI:10.1016/j.jhydrol.2008.08.026]
8. Chen, J and B.J. Adams. 2006. Integration of artificial neural networks with conceptual models in rainfall-runoff modeling. Journal of Hydrology, 318(1-4): 232-249. [
DOI:10.1016/j.jhydrol.2005.06.017]
9. Croke, B.F.W. and A.J. Jakeman. 2008. Use of the IHACRES rainfall-runoff model in arid and semi arid regions. In: Howard, W., S. Sorooshian and K. D. Sharma (eds.) Hydrological Modelling in Arid and Semi-Arid Areas, Cambridge University Press, United Kingdom. 41-48 pp. [
DOI:10.1017/CBO9780511535734.005]
10. Dye, P.J. and B.F.W. Croke. 2003. Evaluation of streamflow predictions by the IHACRES rainfall-runoff model in two South African catchments. Environmental Modelling & Software, 18(8): 705-712. [
DOI:10.1016/S1364-8152(03)00072-0]
11. Ghorbani, M.A., A. Azani and L. Naghipour. 2016. Comparison of the Performance of Support Vector Machine with other Intelligent Techniques to Simulate Rainfall-Runoff Process. Journal of Watershed Management Research, 7(13): 103-92 (In Persian). [
DOI:10.18869/acadpub.jwmr.7.13.103]
12. Goodarzi, M., B. Salahi and A. Hoseini. 2018. Assessment of IHACRES Model in Simulating River Discharge in Urmia Lake Basin. Iranian Journal of Watershed Management Science and Engineering, 12(43): 1-10 (In Persian).
13. Gupta, H.V., H. Kling., K.K. Yilmaz and G.F. Martinez. 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2): 80-91. [
DOI:10.1016/j.jhydrol.2009.08.003]
14. Hafezparast, M. and S. Marabi. 2021. Prediction of discharge using artificial neural network and IHACRES models due to climate change. Journal of Renewable Energy and Environment, 8(3): 75-85.
15. Jakeman, A. J and G. M. Hornberger. 1993. How much complexity is warranted in a rainfall-runoff model? Water Resources Research, 29(8): 2637-2649. [
DOI:10.1029/93WR00877]
16. Karimpour, F., A. Darzi-Naftchali and M. Nadi. 2019. Technical Report"Performance Comparison of IHACRES Model and Artificial Neural Network to Predict the Flow of Sivand River. Journal of Watershed Management Research, 10(20): 262-267 (In Persian). [
DOI:10.29252/jwmr.10.20.262]
17. McIntyre, N and A. Al-Qurashi. 2009. Performance of ten rainfall-runoff models applied to an arid catchment in Oman. Environmental Modelling & Software, 24(6): 726-738. [
DOI:10.1016/j.envsoft.2008.11.001]
18. MINNS, A.W. and M.J. HALL. 1996. Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal, 41(3): 399-417. [
DOI:10.1080/02626669609491511]
19. Modaresi, F., K. Ebrahimi and S. Araghinejad. 2022. Ranking Evaluation of Data-driven and Conceptual Modelling of Rainfall-Runoff Process in Monthly Time Scale. Irrigation and Water Engineering, 12(4): 258-273 (In Persian).
20. Mohammadi, K., H.R. Eslami and D.S.H. Dayani. 2005. Comparison of regression, ARIMA and ANN models for reservoir inflow forecasting using snowmelt equivalent (a case study of Karaj). Journal Of Agricultural Science and Technology (Jast), 21(7): 17-30.
21. Napolitano, G., F. Serinaldi and L. See. 2011. Impact of EMD decomposition and random initialisation of weights in ANN hindcasting of daily stream flow series: An empirical examination. Journal of Hydrology, 406(3): 199-214. [
DOI:10.1016/j.jhydrol.2011.06.015]
22. Nash, J.E. and J.V. Sutcliffe. 1970. River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology, 10(3): 282-290. [
DOI:10.1016/0022-1694(70)90255-6]
23. Nazeri Tahroudi, M., M. Amirabadyzadeh and M.J. Zeynali. 2018. Evaluation of the Accuracy of Artificial Intelligence and Regression Models in Simulation the Daily Temperature. Journal of Meteorology and Atmospheric Science, 1(1): 65-76 (In Persian).
24. Raman, H. and N. Sunilkumar. 1995. Multivariate modelling of water resources time series using artificial neural networks. Hydrological Sciences Journal, 40(2): 145-163. [
DOI:10.1080/02626669509491401]
25. Tokar, A.S. and M. Markus. 2000. Precipitation-runoff modeling using artificial neural networks and conceptual models. Journal of Hydrologic Engineering, 5(2): 156-161. [
DOI:10.1061/(ASCE)1084-0699(2000)5:2(156)]
26. Yang, T.C., P.S. Yu and C.C. Chen. 2005. Long-term runoff forecasting by combining hydrological models and meteorological records. Hydrological Processes, 19(10): 1967-1981. [
DOI:10.1002/hyp.5658]