Volume 9, Issue 17 (9-2018)                   J Watershed Manage Res 2018, 9(17): 39-48 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Behyan Motlagh S, Pajoohesh M, Honarbakhsh A, Salehi Hafshejani N. (2018). Assessment Performance of HEC-HMS Hydrological Model for the Lumped and Semi-distributive Watershed (Case Study: Kohsukhteh Catchment). J Watershed Manage Res. 9(17), 39-48. doi:10.29252/jwmr.9.17.39
URL: http://jwmr.sanru.ac.ir/article-1-621-en.html
1- Shahrekord University
2- Malayer University
Abstract:   (3582 Views)

For modeling, the concept of the system and the system boundary is necessary.  The system is defined as a group of objects that in order to fulfill a specific purpose in the framework relationship or interdependence of regularly are interconnected. Systems rainfall - runoff from rainfall in the basin is started and after applying the types of losses (evaporation, infiltration, etc) it will become runoff. In the study of the HEC-HMS model for show the effectiveness of the sub-basin in runoff of the watershed is used; so SCS curve number method for losses method and SCS unit hydrograph method for transmission method were used. In beginning distribution basin model with three sub-basin then as an lumped basin model was run. The results show that the accuracy of the model in the watershed by taking sub-basin is more than lumped basin model..

Full-Text [PDF 1723 kb]   (1949 Downloads)    
Type of Study: Research | Subject: هيدرولوژی
Received: 2016/05/5 | Accepted: 2017/09/5

References
1. 1. Adamowski, J. 2013. Using support vector regression to predict direct runoff, base fl ow and total fl ow in a mountainous watershed with limited data in Uttaranchal, India. Annals of Warsaw University of Life Sciences-SGGW. Land Reclamation, 45(1): 71-83. [DOI:10.2478/sggw-2013-0007]
2. Ahn, G. 2007. The effect of urbanization on the hydrologic regim of the bigdarby creek watershed, Ohio. (PHD) Thesis, Ohio State University, Ohio,USA, 189 pp.
3. Agrawal, A. 2005. A data model with pre-and-post processor for HEC-HMS. (MSc) Thesis, Texas A&M University, Texas, USA, 210 pp.
4. Alexander Braud, J. 2009. Impact of watershed delineation detail on hydrologic process modeling in low slop areas. M.Sc. Thesis, Louisiana State University, Louisiana, USA. 123 pp.
5. Ariapour, A. and K. Karami. 2013. Anticipated effect of change in rangland in amount runoff using HEC-HMS in Golrod Boroujerd watershed. Journal of Iran's Natural Ecosystems, 9: 97-115 (In Persian).
6. Asadi, A. and F. Boustani. 2013. Performance evaluation of the HEC-HMS hydrologic model for lumped and semi-distributed stormflow simulation (StudyArea: Delibajak Watershad). American Journal of Engineering Research (AJER), 2(11): 115-121.
7. Azagra E. 1998. Rainfall runoff in the Guadalupe River Basin. CE 397 GIS in Water Resources.
8. Bardossy, A. and T. Das. 2008. Rainfall network on model calibration and application. Hydrology and Earth System Sciences Discussions, 12: 77-89. [DOI:10.5194/hess-12-77-2008]
9. Behnam, P., M. Sayannegad and A. Ebrahimi. 2012. The effect of land use on flood hydrograph of Zayanderod river in Esfahan metropolitan area. Journal Water and Wastewater, 4: 103-111 (In Persian).
10. Bendient, P.B., W.C. Huber and B.E. Vieux. 2013. Hydrology and floodplain analysis. Pearson, england.780,297-339pp.
11. Beven, K. 2012. Rainfall-Runoff Modeling: The Primer. John Wiley & Sons.450,51-79pp. [DOI:10.1002/9781119951001]
12. Bhadra, A., N. Panigrahy, R. Singh, N.S. Raghuwanshi, B.C. Mal and M.P. Tripathi. 2008. Development of a geomorphological instantaneous unit hydrograph model for scantily gauged watersheds. Journal of Environmental Modelling and Software, 23: 1013-1025. [DOI:10.1016/j.envsoft.2007.08.008]
13. Boggs, J.L. and G. Sun. 2011. Urbanization alters watershed hydrology in the Piedmont of North Carolina. Ecohydrology, 4(2): 256-264. [DOI:10.1002/eco.198]
14. Booij, M.J. 2003. Determination and integration of appropriate spatial scales for river basin modeling. Hydrol Process, 17: 2581-2598. [DOI:10.1002/hyp.1268]
15. Bormann, H. 2006. Impact of spatial data resolution on simulated catchment water balances and model performance of the multiscale TOPLATS model. Hydrology and earth System Science, 10: 165-179. [DOI:10.5194/hess-10-165-2006]
16. Butts, M.B., J.T. Payne, M. Kristensen and H. Madsen. 2004. An evaluation of the impact of model structure on hydrological modeling uncertainty for streamfl ow prediction. Journal of Hydrology, 298: 242-266. [DOI:10.1016/j.jhydrol.2004.03.042]
17. Cabral Moreira, A.A. 2013. Modelagem hidrologica da bacia hidrografica do Rio Granjeiro- Crato-CE. (MSc) Thesis, Universidade Federal do Ceara, 164 pp.
18. Chu, X., A.M. ASCE and A. Steinman. 2009. Event and Continuous Hydrologic Modeling with HEC-HMS. Journal of Irrigation and Drainage Engineering, 135: 119-125. [DOI:10.1061/(ASCE)0733-9437(2009)135:1(119)]
19. Elbialy, S., A. Mahmoud, B. Pradhan and M. Buchroithner. 2013. Application of spaceborne synthetic aperture radar data for exteaction soil moisture and its use in hyrological modeling at gottleuba. Journal of Flood rick management, 7(2): 159-175. [DOI:10.1111/jfr3.12037]
20. Grove, M., J. Harbor and B. Engle. 1998. Composite vs. distributed curve numbers:effects on estimates of storm runoff depths. JAWRA Journal of the American Water Resources Association, 34(5):1015-1023. [DOI:10.1111/j.1752-1688.1998.tb04150.x]
21. Ibrahim-Bathis, K. and S.A. Ahmed. 2016. Rainfall-runoff modelling of Doddahalla watershed. Arabian Journal of Geosciences, 9(3): 170. [DOI:10.1007/s12517-015-2228-2]
22. Hydrologic Engineering Center- Hydrologic Modelig System. 2013. Hydrologic Engineering Center- Hydrologic Modelig System (HEC-HMS) Users manual (Version 4.0). US Army Crops of Engineers.
23. Kabiri, R., V. Ramani Bai and A. Chan. 2015. Assessment of hydrologic impacts of climate change on the runoff trend in Klang Watershed, Malaysia. Environmental Earth Sciences, 73: 27-37. [DOI:10.1007/s12665-014-3392-5]
24. Karabowa, B., A.E. Sikorska, K. Banasik and S. Kohnova. 2012. Parameters determination of a conceptual rainfall-runoff model for a small catchment in Carpathians. Annals of Warsaw University of Life Sciences-SGGW. Land Reclamation, 44(2): 155-162. [DOI:10.2478/v10060-011-0071-z]
25. Karimi, M., H. Maleki Nejad, A. Abghari and M.S. Aziziyan. 2011. Assess different methods simulation of flood hydrograph using HEC-HMS package (Case Study: Chehelgazi Watershed), Journal of Iran Water Research, 9: 29-38 (In Persian).
26. Khoshravesh, M., M. Raeeni and E. Nikzad Tehrani. 2016. Application Continuous rainfall-runoff models HMS-SMA And Frequency Droughts and floods in Neka Watershed under climate scenarios A2 Model HadCM3, Journal of Watershed Management Research‌ , 7(14): 128-140 (In Persian). [DOI:10.29252/jwmr.7.14.140]
27. Lu, H., T. Hou, R. Horton, Y. Zhu, X. Chen, Y. Jia, W. Wang and X. Fu. 2013. The stream flow estimation using the xinanjiang rainfall runoff model and dual state-parameter estimation method. Journal of Hydrology, 480: 102-114. [DOI:10.1016/j.jhydrol.2012.12.011]
28. Mahdavi, M. 2007. Applied Hydrology, Tehran University Press, 425 (2):135-145
29. Mahmood, R., S. Jia and M.S. Babel. 2016. Potential impacts of climate change on water resources in the Kunhar river basin, Pakistan. Water, 8(1): 2-24. [DOI:10.3390/w8010023]
30. Meenu, R., S. Rehana and P.P. Muju. 2013. Assesment of hydrological impacts of change in Tunga- Bhadra river basin India with HEC-HMS and SDSM. Journal of Hydrological Processes, 27(11): 1572-1589. [DOI:10.1002/hyp.9220]
31. Moradnejadi, M., M. Jor Gholami and A. Malekian. 2015. Sub-basins prioritize the right to exploit the forest using HEC-HMS model (Case Study: Kheirood forest), Forest and wood products, Iranian Journal of Natural Resources, 2: 405-418 (In Persian).
32. Nadala, H. and U.R. Ratanayke. 2011. Flood risk analysis using Fuzzy models. Journal of Flood risk management, 2: 121-128. [DOI:10.1111/j.1753-318X.2011.01097.x]
33. Noori, N., L. Kalin, S. Sen, P. Srivastava and C. Lebleu. 2016. Identifying areas sensitive to land use/land cover changefor downstream flooding in a coastal Alabama watershed. Regional Environmental change, 16(6): 1833-1845. [DOI:10.1007/s10113-016-0931-5]
34. Norali, M. and B. Ghahreman. 2017. Assessing the impact of watershed management operation on flood hydrograph model HEC-HMS (Case Study: Watershed Gosh and Bahre), Journal of Watershed Management Research‌, 7(13): 60-71 (In Persian). [DOI:10.18869/acadpub.jwmr.7.13.71]
35. Olang, L.O. and J. Furst. 2011. Effects of land cover change on flood peak discharges and runoff volumes: model estimates for the Nyando River Basin, Kenya. Hydrological Processes, 25(1): 80-89. [DOI:10.1002/hyp.7821]
36. Soleimani, K., M.B. Gonbad, S.R. Mousavi, Sh. Khaliq. 2008. The potential for flooding in catchments using HEC-HMS model in GIS (Case Study kasilian catchment). Physical Geography Researches, 65: 51-60 (In Persian).
37. Sup, M.S., S.M. Taley and M.U. Kale. 2015. Rainfall-runoff modeling using HEC-HMS for Wan river basin. Internatinal Journal of Research in Engineering, Science and Technologies, 28: 21-30.
38. Szalinska, W. and T. Zawislak. 2005. The use of radar data for spatial interpolation ofprecipitation. In: Hydrology, meteorology, climatology- research and forecasts in the era of computerization. Institute of Meteorology and water Management, Monograph, 195-205.
39. Telveri, A. 1996. Hydrologic models in a simple word, The Research institute of forests and Rangelands, (In Persian).
40. Vassova, D. 2013. Comparison of rainfall-runoff models for design discharge. Soil and Water Research, 8(1): 26-33. [DOI:10.17221/36/2012-SWR]
41. Walega, A. and L. Ksiazek. 2015. The effect of a hydrological model structure and rainfall data. Annals of Warsaw University of Life Sciences-SGGW, 47(4): 305-321. [DOI:10.1515/sggw-2015-0033]
42. Walter Drake, Chad. 2014. Assesment of flood Mitigation Strategies For Reducing Peak Discharges in The Upper Cedar River Watershed. (M.Sc.) Thesis, University of Iowa, Iowa. 229 pp.
43. Zhang, C., J. Chu and G. fu. 2013. Sobol's sensitivity analysis for a distributed hydrological model of Yichun River Basin. China Journal of Hydrology, 480: 58-68. [DOI:10.1016/j.jhydrol.2012.12.005]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb