1. Abraham, A. 2005. Artificial neural networks. In: Sydenham, P.H. and R. Thorn (eds.) Handbook of measuring system design, 901-908 pp., John Wiley & Sons, Stillwater, OK, USA. [
DOI:10.1002/0471497398.mm421]
2. Akbarzadeh, F., H. Hasanpour and S. Emamgholizadeh. 2016. Groundwater level prediction of Shahrood Plain using RBF neural networks. Journal of Watershed Management Research, 7: 104-118 (In Persian). [
DOI:10.18869/acadpub.jwmr.7.13.118]
3. Ardiclioglu, M., O. Kisi and T. Haktanir. 2007. Suspended sediment prediction using two different feed-forward backpropagation algorithms. Canadian Journal of Civil Engineering, 34: 120-125. [
DOI:10.1139/l06-111]
4. Chen, S.T. and P.S. Yu. 2007. Pruning of support vector networks on flood forecasting. Journal of Hydrology, 347: 67-78. [
DOI:10.1016/j.jhydrol.2007.08.029]
5. Dibike, Y.B., S. Velickov, D.P. Solomatine and M.B. Abbott. 2001. Model induction with support vector machines: introduction and applications. Journal of Computing in Civil Engineering, 15: 208-216. [
DOI:10.1061/(ASCE)0887-3801(2001)15:3(208)]
6. Erasto, P. 2001. Support vector machines-backgrounds and practice. BSc Thesis, University of Helsinki, Faculty of Science, Rolf Nevanlinna Institute, Helsinki, Finland. 78 pp.
7. Govindaraju, R.S. 2000. Artificial neural networks in hydrology. I: preliminary concepts. Journal of Hydrologic Engineering, 5: 115-123. [
DOI:10.1061/(ASCE)1084-0699(2000)5:2(115)]
8. Javadi, M.R., H. Tehranipour, Sh.A. Gholami and M.A. Fatahi Ardakani. 2012. Comparing methods of Mora and Varson and multivariate regression in zoning landslide hazard of Kan Watershed. Journal of Watershed Management Research, 3: 92-105 (In Persian).
9. Kiarash, S., A. Enderami, A. Malekian and M. Mahdavi. Investigation of the capability of artificial neural networks for estimating suspended sediment load (Case Study: Silakhor Watershed, Lorestan Province). 9th International River Engineering Conference, 8 pp., Ahwaz, Iran (In Persian).
10. Lalehzari, R. and S.H. Tabatabaei. 2010. Chemical characteristics of groundwater in Shahrekord Plain. Journal of Environmental Studies, 36: 55-62 (In Persian).
11. Lallahem, S., J. Mania, A. Hani and Y. Najjar. 2005. On the use of neural networks to evaluate groundwater levels in fractured media. Journal of Hydrology, 307: 92-111. [
DOI:10.1016/j.jhydrol.2004.10.005]
12. Lijun, F. and L. Shuquan. 2007. Forecasting the runoff using least square support vector machine. Tianjin Teaching Committee, TJGL06-099: 884-889.
13. Mahdavi, R., J. Abedi Koupaei, M. Rezaei and M. Abdolhosseini. 2004. Identification of appropriate sites for artificial recharge of groundwater resources using RS and GIS. 2nd Students Conference on Soil and Water Resources, 11 pp., Shiraz, Iran (In Persian).
14. Moharampour, M., A. Mehrabi and M. Katouzi. 2010. Evaluation of support vector machine on daily flow prediction. 4th Iran Water Resources Management Conference, 11 pp., Tehran, Iran (In Persian).
15. Mukerji, A., C. Chatterjee and N.S. Raghuwanshi. 2009. Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models. Journal of Hydrologic Engineering, 14: 647-652. [
DOI:10.1061/(ASCE)HE.1943-5584.0000040]
16. Naserabadi, F., A. Esmali Ouri, H. Akbari and R. Rostamian. 2016. River flow simulation using SWAT model (Case study: Ghareh Su River in Ardabil Province-Iran). Journal of Watershed Management Research, 7: 50-59 (In Persian). [
DOI:10.18869/acadpub.jwmr.7.13.59]
17. Pourkerman, M., A. Charkhabi, H. Mosadegh, H. Peyrowan and A. Talebi. 2011. Identification of effective chemical factors on soil resistivity using discriminant analysis stepwise method (case study: marls of Sorkheh Watershed). Iranian Journal of Watershed Management Science and Engineering, 5: 23-32(In Persian).
18. Ramirez, M.C.V., H.F. Campos Velho and N.J. Ferreira. 2005. Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. Journal of Hydrology, 301: 146-162. [
DOI:10.1016/j.jhydrol.2004.06.028]
19. Razavi Ghahfarokhi, S.B., Sh. Karimi Googhari and M.B. Rahnama. 2013. Shahr-e-kord Plain groundwater level modeling using artificial neural networks and wavelet analysis. The 2nd International Conference on Plant, Water, Soil and Weather Modeling, 12 pp., Kerman, Iran (In Persian).
20. Sahrai, Sh. and M. Zaker Moshfegh. 2013. Using support vector machines for river flow prediction. 7th National Congress on Civil Engineering, 9 pp., Zahedan, Iran (In Persian).
21. Smola, A.J. and B. Scholkopf. 2004. A tutorial on support vector regression. Statistics and Computing, 14: 199-222. [
DOI:10.1023/B:STCO.0000035301.49549.88]
22. Sreekanth, P.D., N. Geethanjali, P.D. Sreedevi, S. Ahmed, N. Ravi Kumar and P.D. Kamala Jayanthi. 2009. Forecasting groundwater level using artificial neural networks. Current Science, 96: 933- 939.
23. Vapnik, V. 1998. Statistical Learning Theory. John Wiley, New York, USA, 732 pp.
24. Yoon, H., S.C. Jun, Y. Hyun, G.O. Bae and K.K. Lee. 2011. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology, 396: 128-138. [
DOI:10.1016/j.jhydrol.2010.11.002]
25. Yu, P.S., S.T. Chen and I.F. Chang. 2006. Support vector regression for real-time flood stage forecasting. Journal of Hydrology, 328: 704-716. [
DOI:10.1016/j.jhydrol.2006.01.021]
26. Zounemat-Kermani, M. 2013. Hydrometeorological parameters in prediction of soil temperature by means of artificial neural network: case study in Wyoming. Journal of Hydrologic Engineering, 18: 707-718. [
DOI:10.1061/(ASCE)HE.1943-5584.0000666]
27. Zounemat-Kermani, M. 2014. Principal component analysis (PCA) for estimating chlorophyll concentration using forward and generalized regression neural networks. Applied Artificial Intelligence, 28: 16-29. [
DOI:10.1080/08839514.2014.862771]
28. Zounemat-Kermani, M., O. Kisi and T. Rajaee. 2013. Performance of radial basis and LM-feed forward artificial neural networks for predicting daily watershed runoff. Applied Soft Computing, 13: 4633-4644. [
DOI:10.1016/j.asoc.2013.07.007]