Volume 8, Issue 15 (9-2017)                   J Watershed Manage Res 2017, 8(15): 61-72 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

(2017). Evaluation of Fractal Models in Describing Particle Size Distribution of Sediment (Case of study: Fooladmahale of Semnan). J Watershed Manage Res. 8(15), 61-72. doi:10.29252/jwmr.8.15.61
URL: http://jwmr.sanru.ac.ir/article-1-842-en.html
Abstract:   (3345 Views)
The objective of current study was to invstigate the accuracy of Tyler and Wheatcraft, Bird et al. and Kravchenko and Zhang fractal models in describing particle size distribution (PSD) of sediment in 14 successive check dams for two depths of 0-15 and 15-30 cm. Sediment PSD were determined in 28 samples using hydrometer method . The referred fractal models were fitted on sediments PSD data. Results indicated that there was no regular relationamong fractal dimensions insuccessive check dams. In addition, sediments transport from surroundingsoils was more observable in check dams. Two-parameter models of Bird et al. and Kravchenko and Zhang presented a better fit compared to one-parameter model of Tyler and Wheatcraft. The results of statistical analysis proved that the sigmoid function was able to describe the relation between fractal dimensions and clay, sand and silt percentage with a greater accuracy compared to the linear sigmoid function. Stepwise regressionanalysisdetermined astrong and significant correlation (R2= 0.97**) between fractal dimensionobtained from Tyler and Wheatcraft modelwithclay and sandcontents. According the result of this study, the determination of sediment PSD is possible bymeasurement of clayandsand amount.
 
Full-Text [PDF 3723 kb]   (1574 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/09/18 | Accepted: 2017/09/18

References
1. Ahmadi, A., M. Neyshabouri and H. Asadi. 2010. Relationship between fractal dimension of particle size distribution. Journal of water and soil, 20/1(4): 73-81 (In Persian).
2. Bayat, H., N. Davatgar and M. Jalali. 2014. Prediction of CEC using fractalparameters by artificial neural networks. Intenationa Agrophys, 28: 143-152(In Persian) [DOI:10.2478/intag-2014-0002]
3. Bayat, H. 2008. Create transfer functions to predict retention curve through artificial neural networks using fractal parameters and principal component analysis. Ph.D. Thesis, University of Tabriz Tabriz Iran, 180 pp (In Persian).
4. Bazoubandi, M. 2012. Evaluation of land use patterns and its optimization (Case of study: Goleroudbar Watershed). M.Sc. Thesis Faculty of Desert study University of Semnan. Semnan, Iran. 110 pp (In Persian).
5. Bird, N.R.A., E. Perrier and M. Rieu. 2000. The water retention function for a model of soil structure with pore and solid fractal distributions. European Journal of Soil Science, 51: 55-63. [DOI:10.1046/j.1365-2389.2000.00278.x]
6. 6 .Buchan, G.D. 1989. Applicability of the simple lognormal model to particle-size distribution in soils Soil Science, 147: 155-161. [DOI:10.1097/00010694-198903000-00001]
7. Buchan, G.D., K.S.Grewal and A.B. Robson. 1993. Improvedmodelsof particle-size distribution: An illustration of model comparisontechniques. Soil Science Society ofAmerica Journal, 57: 901-908. [DOI:10.2136/sssaj1993.03615995005700040004x]
8. Burnham, K.P. and D.R. Anderson. 2002. Model selection and multi-model inference: a practical information-theoretic approach. Springer, 206 pp.
9. Campbell, G.S. 1985. Soil physics with BASIC: Transport models for soil-plant Systems vol (14). Elsevier, Amsterdam, 167 pp.
10. 10 . Ersahin, S., H. Gunal, T. Kutlu, B. Yetgin and S. Coban. 2006. Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particle-size distribution Geoderma, 136: 588-597. [DOI:10.1016/j.geoderma.2006.04.014]
11. Filgueira, R.R., L.L. Fournier, I.C. Cecilia, P. Crlati and M.G. Carcia. 2006.Particle-size distribution in soils: A critical study of the fractal model validation. Geoderma, 134: 327-334. [DOI:10.1016/j.geoderma.2006.03.008]
12. Fredlund, M.D., D.G. Fredlund and G.W. Wilson. 2000. An equationto represent grainsize distribution. Canadian Geotechnical Journal, 37: 817-827. [DOI:10.1139/cgj-37-4-817]
13. Gee, G.W., J. W. Bauder and A. Klute. 1986. Particle-size analysis Methods of soil analysis Part 1. Physical and mineralogical methods, 383-411.
14. Hassanli, A.M., A. Esmaeli Nameghi and S. Beecham. 2009. Evaluation of the effect of porous check dam location on fine sediment retention (a case study). Environ Monit Assess, 152: 319-32. [DOI:10.1007/s10661-008-0318-2]
15. Hwang, S.I., KP. Lee, D.S. Lee and S.E. Powers. 2002. Models for estimating soil particle-size distributions. Soil Science Society of America Journal, 66: 1143-1150. [DOI:10.2136/sssaj2002.1143]
16. Kravchenko, A. and R. Zhang. 1998. Estimating the soil water retention from particle-size distributions: A fractal approach, Soil Science, 163: 171-179. [DOI:10.1097/00010694-199803000-00001]
17. Mehdizadeh, L., F. Asadzadeh and A. Samadi. 2015. Application of mathematical models to describe the particle size distribution of sediments behind successive check dams. Journal of Watershed Engineering and Management, 4: 323-336 (In Persion).
18. Milla'n, H., M. Gonza'lez-Posada and M.J. Aguilar. 2003. On the fractal scaling of soil data Particle-size distributions. Geoderma, 117: 117-128. [DOI:10.1016/S0016-7061(03)00138-1]
19. Mohammadi, M.H., M. Khatar and M. Vanclooster. 2014. Combining a single hydraulic conductivity measurement with particle size distribution data for estimating the full range partially saturated hydraulic conductivity curve. Soil Science Society of America Journal, 78: 1594-1605. [DOI:10.2136/sssaj2014.03.0098]
20. Nadeu, E., A.A. Berhe, J.de Vente and C. Boix-Fayos. 2012. Erosion, deposition and replacement of soil organic carbon in Mediterranean catchments: a geomorphological, isotopic and land use change approach. Bio Geosciences, 9: 1099-1111. [DOI:10.5194/bg-9-1099-2012]
21. Lee, T.K. and H.M. Ro. 2014. Estimating soil water retention function from its particle-size distribution Geosciences Journal, 18: 219-230. [DOI:10.1007/s12303-014-0017-7]
22. Rousseva, S.S. 1997. Data transformations between soil textureschemes European Journal of Soil Science, 48: 749-758. [DOI:10.1046/j.1365-2389.1997.00113.x]
23. SAS Institute. 2004. User's guide version 9.1: Statistics SAS Institute, Cary, NC.
24. Shiozawa, S. and G.S. Campbell. 1991. On the calculation of mean particle diameter and standard deviation from sand, silt, and clay fractions. Soil science, 152: 427-431. [DOI:10.1097/00010694-199112000-00004]
25. Su, Y.Z., H.L. Zhao, W.Z. Zhao and T.H. Zhang. 2004. Fractal features of soilparticle size distribution and the implication for indicating desertification. Geoderma, 122: 43-49. [DOI:10.1016/j.geoderma.2003.12.003]
26. Tirgarsoltani, M.T., A.A. Zolfaghari, M. Gorji and M. Shorafa. 2012. Investigatepractical constraints functions ofdescribing soil particle size distribution.Journal of Soil andWater, 26: 67-76 (In Persian).
27. The Math Works, Inc. 2007. MATLAB: the language of technical computing. version 7.5.
28. Tirgarsoltani, M.T., M. Gorji, M.H. Mohammadi and H. Millan. 2014. Evaluation of models for description of wet aggregate size distribution from soils of different land uses. Soil Science Plant Nutrition, 60: 123-133. [DOI:10.1080/00380768.2013.878642]
29. Tyler, SW. and S.W. Wheatcraft. 1992. Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Science Society of America Journal, 56: 362-369. [DOI:10.2136/sssaj1992.03615995005600020005x]
30. Tyler, SW. and S.W. Wheatcraft. 1989. Application of fractal mathematics to soil water retention estimation .Soil Science Society of America Journal, 53: 987-996. [DOI:10.2136/sssaj1989.03615995005300040001x]
31. Xiao, L., X. Sha, L. GuoBin and Z. Chao. 2014. Fractal features of soil profiles under different land use patterns on the Loess Plateau, China. Journal of Arid Land, 6: 550-560. [DOI:10.1007/s40333-014-0023-7]
32. Zar, J.H. 1999. Biostatistical analysis Pearson Education, London, UK 663 pp.
33. Zhao, P., M. Shao and J. Zhuang. 2009. Fractal features of particle size redistributions of deposited soils on the dam farmlands. Soil Science, 174: 403-407. [DOI:10.1097/SS.0b013e3181aea79a]
34. Zhao, P. M. Shao and R. Horton. 2011. Performance of soil particle-size distribution Models for Describing Deposited Soils Adjacent to Constructed Dams in the China Loess Plateau Acta Geophysica, 59: 124-138. [DOI:10.2478/s11600-010-0037-2]
35. Zolfaghari, A.A., M.T. Tirgarsoltani, M.R. Yazdani and E. Solimamni. 2014. Evaluation of efficiency models to describing soil particle size distribution Journal of Water and Soil, 45: 199-209 (In Persian).

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb