Volume 8, Issue 16 (2-2018)                   J Watershed Manage Res 2018, 8(16): 170-177 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

(2018). Estimation of landslide size probability occurrence in the Pivejan Watershed (Razavi Khorasan Province). J Watershed Manage Res. 8(16), 170-177. doi:10.29252/jwmr.8.16.170
URL: http://jwmr.sanru.ac.ir/article-1-913-en.html
Abstract:   (3668 Views)
Knowing the number, area, and frequency of landslides occurred in each area has a prominent role in the long-term evolution of area dominated by landslides and can be used for analyzing of susceptibility, hazard, and risk. In this regard, the current research is trying to consider identified landslides size probability in the Pivejan Watershed, Razavi Khorasan Province. In the first step, landslides inventory map was created using Google Earth images and extensive field surveys. In the next step, area of each landslide was determined using ArcGIS software and Xtools Extension. Subsequently, probability of landslides size identified were calculated in R statistical software using Double Pareto (DP), Double Pareto Simplified (DPS), and Inverse Gamma (IG) probability density functions in the study area. Also, in the present study for optimization of parameters coefficients used of two non-parametric probability density function namely Histogram Density Estimation (HDE) and Kernel Density Estimation (KDE) and a parametric Maximum Likelihood (ML) estimation. The results showed that non-parametric estimation methods (i.e., HDE and KDE) provided accurate results for all the landslides; whereas, ML failed to provide a good result. Also, results of landslide occurrence probability showed a good similarity between DPS and IG with different optimization techniques, meanwhile the DP model had under estimation results and can’t presented a correct calculation for probability of landslides in the study area.
Full-Text [PDF 1746 kb]   (1088 Downloads)    
Type of Study: Research | Subject: Special
Received: 2018/01/30 | Accepted: 2018/01/30

References
1. Bijukchhen, S. M., P. Kayastha and M. R. Dhital. 2013. A comparative evaluation of heuristic and bivariate statistical modelling for landslide susceptibility mapping in Ghurmi-Dhad Khola, East Nepal. Arabian Journal of Geoscience, 6(8): 2727-2743. [DOI:10.1007/s12517-012-0569-7]
2. Brunetti, M.T., F. Guzzetti and M. Rossi. 2009. Probability distributions of landslide volumes. Nonlinear Processes in Geophysics, 16: 179-188. [DOI:10.5194/npg-16-179-2009]
3. Chen, W., W. Li, E. Hou, H. Bai., H. Chai., D. Wang., X. Cui and Q. Wang. 2014. Application of frequency ratio, statistical index, and index of entropy models and their comparison in landslide susceptibility mapping for the Baozhong Region of Baoji, China. Arabian Journal of Geoscience. DOI: 10.1007/s12517-014-1554-0. [DOI:10.1007/s12517-014-1554-0]
4. Das, I., A. Stein., N. Kerle and V.K. Dadhwal. 2011. Probabilistic landslide hazard assessment using homogeneous susceptible units (HSU) along a national highway corridor in the northern Himalayas, India. Landslides, 8: 293-308. [DOI:10.1007/s10346-011-0257-9]
5. Fell, R., K.K.S. Ho, E. Lacasse and E. Leroi. 2005. A framework landslide risk assessment and management. (Hunger, O, Fell, R., Couture, R., Eberhardt, E., eds.), Taylor and Francis Group, London, 3-26.
6. Galli, M., F. Ardizzone, M. Cardinali, F. Guzzetti and P. Reichenbach. 2008. Comparing landslide inventory maps. Geomorphology, 94: 268-289. [DOI:10.1016/j.geomorph.2006.09.023]
7. Guzzetti, F. 2005. Review and selection of optimal geological models related to spatial information available, Action 1.14. Risk aware is partially co-financed by the European ::union:: under the INTEREG IIIB CADSES program, pp. 44
8. Guzzetti, F. 2006. Landslide hazard and risk assessment. Ph.D. Thesis, Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität, University of Bonn, Bonn, Germany, 389 pp. WWW page, http://geomorphology.irpi.cnr.it/Members/fausto/PhD-dissertation.
9. Guzzetti, F., B. D. Malamud, D. L. Turcotte and P. Reichenbach 2002. Power-law correlations of landslide areas in Central Italy. Earth and Planetary Science Letters, 195: 169-183. [DOI:10.1016/S0012-821X(01)00589-1]
10. Guzzetti, F., P. Reichenbach, M. Cardinali, M. Galli and F. Ardizzone. 2005. Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72: 272- 299. [DOI:10.1016/j.geomorph.2005.06.002]
11. Hungr, O., S.G. Evans and J. Hazard. 1999. Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia. Canadian Geotechnical Journal, 36(2): 224-238. [DOI:10.1139/t98-106]
12. Hovius, N., C. P. Stark, H.-T. Chu and J.-C. Lin. 2000. Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. Journal of Geology, 108: 73-89. [DOI:10.1086/314387]
13. Jaiswal, P., C. J. van Westen and V. Jetten. 2011. Quantitative estimation of landslide hazard along transportation lines using historical records. Landslides, 8: 279-291. [DOI:10.1007/s10346-011-0252-1]
14. Koehorst, B.A.N., O. Kjekstad, D. Patel, Z. Lubkowski, J. G. Knoeff and G. J. Akkerman. 2005. Work package 6, Determination of Socio-Economic Impact of Natural Disasters, Assessing socio-economic Impact in Europe, pp. 173.
15. Li, L., H. Lan and Y. Yuming Wu. 2016. How sample size can effect landslide size distribution. Geoenvironmental Disasters, 3:18, 11pp. DOI 10.1186/s40677-016-0052-y [DOI:10.1186/s40677-016-0052-y]
16. Malamud, B.D., D.L. Turcotte, F. Guzzetti and P. Reichenbach. 2004. Landslide inventories and their statistical properties, Earth Surface Processes and Landforms, 29(6): 687-711. [DOI:10.1002/esp.1064]
17. Riguer, D and M. Rossi. 2011. Magnitude-frequency probability estimation of landslides. The 24th Annual Geological Convention of the Geological Society of the Philippines 08 December 2011 Crowne Plaza Hotel, Philippines, pp. 19.
18. Rossi, M., F. Ardizzone, M. Cardinali, F. Fiorucci, I. Marchesini, A.C. Mondini, M. Santangelo, S. Ghosh, D.E.L. Riguer, T. Lahousse, K.T., Chang and F. Guzzetti. 2012. A tool for the estimation of the distribution of landslide area, Abstract ID-No.: EGU2012-9438.
19. Singh, A. K. 2010. Bioengineering techniques of slope stabilization and landslide mitigation. Disaster Prevention and Management: An International Journal, 19(3): 384-397. [DOI:10.1108/09653561011052547]
20. Stark, C.P and N. Hovius. 2001. The characterization of landslide size-frequency distributions. Geophysics Research Letter, 28: 1091-1094. [DOI:10.1029/2000GL008527]
21. Varnes, D.J. 1984. Landslide hazard zonation: a review of principles and practice. UNESCO, Paris, pp. 1-55.
22. Wang. Q., W. Li., Y. Wu., Y. Pei and P. Xie. 2016. Application of statistical index and index of entropy methods to landslide susceptibility assessment in Gongliu (Xinjiang, China). Environment Earth Sciences, 75: 598- 599. [DOI:10.1007/s12665-016-5400-4]
23. Wu, C.Y and S.C. Chen. 2013. Integrating spatial, temporal, and size probabilities for the annual landslide hazard maps in the Shihmen watershed, Taiwan. Natural Hazards and Earth System Science, 13: 2353-2367. [DOI:10.5194/nhess-13-2353-2013]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb