دوره 8، شماره 16 - ( پاییز و زمستان 1396 )                   جلد 8 شماره 16 صفحات 187-178 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

(2018). Estimation of Rivers’ Electrical Conductivity using Wavelet Neural Network (Case study: Kakareza River) . J Watershed Manage Res. 8(16), 178-187. doi:10.29252/jwmr.8.16.178
URL: http://jwmr.sanru.ac.ir/article-1-914-fa.html
قربانی محمدعلی، دهقانی رضا. تخمین هدایت الکتریکی رودخانه ها با استفاده از شبکه عصبی موجک (مطالعه موردی: رودخانه کاکارضا) پ‍‍ژوهشنامه مديريت حوزه آبخيز 1396; 8 (16) :187-178 10.29252/jwmr.8.16.178

URL: http://jwmr.sanru.ac.ir/article-1-914-fa.html


چکیده:   (3516 مشاهده)
هدایت الکتریکی (EC) عامل مهمی در مهندسی رودخانه و بویژه مطالعه کیفی آب رودخانه‌ها می‌باشد. در این پژوهش کاربرد شبکه عصبی موجک، جهت پیش‌بینی هدایت الکتریکی رودخانه کاکارضا موردبررسی و ارزیابی قرار گرفت و نتایج آن با مدل شبکه عصبی مصنوعی مقایسه شد. که برای این منظور هیدروژن کربنات، کلرید، سولفات، کلسیم، منیزیم، سدیم و دبی جریان در مقیاس زمانی ماهانه در طی دوره آماری (1393-1347) بعنوان ورودی و هدایت الکتریکی بعنوان پارامتر خروجی انتخاب گردید. معیارهای ضریب همبستگی، ریشه میانگین مربعات خطا و ضریب نش ساتکلیف برای ارزیابی و عملکرد مدل مورد استفاده قرار گرفت. نتایج حاصله نشان داد مدل شبکه عصبی موجک دارای بیشترین ضریب همبستگی (977/0)، کمترین ریشه میانگین مربعات خطا( ds/m032/0) و نیز بیشترین معیار نش ساتکلیف (847/0) در مرحله صحت سنجی در اولویت قرار گرفت. درمجموع نتایج نشان داد مدل شبکه عصبی موجک در تخمین مقادیر حداقل و حداکثر دقت بالایی از خود نشان داده است. نتایج حاکی از توانمندی قابل‌قبول مدل شبکه عصبی موجک در تخمین هدایت الکتریکی آب رودخانه‌ها است.
متن کامل [PDF 1845 kb]   (1610 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1396/11/10 | پذیرش: 1396/11/10

فهرست منابع
1. Banejad, H., M . Kamali, K . Amirmoradi and E. Olyaie. 2014. Forecasting Some of the Qualitative Parameters of Rivers Using Wavelet Artificial Neural Network Hybrid (W-ANN) Model) Case of study: Jajroud River of Tehran and Gharaso River of Kermanshah). Iranian Journal of Health and Environment, 6(3): 277-294 (In Persian).
2. Dastorani, M.T., K.H. AzimiFashi and A. Talebi. 2011. Estimation of Suspended Sediment Using Journal of Artificial Neural Network. Watershed Management Research, 3(6): 61-74 (In Persian).
3. Dayhoff, J.E. 1990. Neural Network Principles: New York: Prentice-Hall International,650pp.
4. Eshghi, P., J. Farzad Mehr, M.T. Dastorani and Z. Arab Asadi.2017. The Effectiveness of Intelligent Models in Estimating the River Suspended Sediments (Case Study: Babaaman Basin, Northern Khorasan). Watershed Management Research, 7(14) :88-95(In Persian).
5. Faryadi, S., K. Shahedi and M. Nabatpoor. 2013. Investigation of Water Quality Parameters in Tadjan River using Multivariate Statistical Techniques. Journal of Watershed Management, 6: 75-92 (In Persian) .
6. Gazzaz, N.M., M.K. Yusoff, A. Zaharin Aris, H. Juahir and M.F. Ramli. 2012. Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors. Journal of Marine Pollution Bulletin, 64(1): 2409-2420.
7. Ghorbani, M.A. and R. Dehghani. 2017. Comparison of Bayesianneural Network, Artificial Neural Network Gene Expression Programming in River Water Quality (Case Study: Belkhviachay river). Watershed Management Research,8(15): 13-24 (In Persian).
8. Khanna, T.1990. Foundation of neural networks: Addison-Wesley Series in New Horizons in Technology: New York: Addison-Wesley,540pp.
9. Kaveh, A. and A. Iran Manesh. 2005. Artificial neural network in the optimization of structures: Building and Housing Research Center,112-120pp (In Persian)
10. Maier, H.R. and G.C. Dandy. 1996. The use of artificial neural networks for the prediction of water quality parameters. Water Resources Research, 32(4): 1013-.1022.
11. Najah, A., A. Elshafie, O. Karim and O. Jaffar.2009. Prediction of Johor river water quality parameters using artificial neural networks. European Journal of scientific research, 28(4): 422-435.
12. Safavi, A.A. and J.A. Romania.1997. Application of wavelet-based neural networks to modelling and optimisation of an experimental distillation column. (IFAC Journal of) Engineering Applications of Artificial Intelligence,10(3): 301-313.
13. Saf Sheken, F., N. Pir Moradian and R. Sharifian. 2012. Simulation of rainfall-runoff hydrograph and the use of artificial neural network model of rainfall in the catchment kasilian. Iran-Watershed Management Science & Engineering, 5(15): 1-10 (In Persian)
14. Sayadi, H., A. Olad Ghafari, A. Faalian and A. A. Sadr aldini. 2009. Comparison of RBF and MLP Neural Networks Performance for Estimation of Reference Crop Evapotranspiration. Soil and Water, 19(2): 1-12 (In Persian)
15. Singh, K.P., A. Basant, A. Malik and G. Jain .2009. Artificial neural network modeling of the river water quality-A Case Study. Journal of Ecological Modeling, 220(2): 888-895.
16. Taklifi , A and G. Asadolah Fardi .2009. Comparison two models RNN and mlp for predict the amount of salt in AjiChay. Tenth Seminar irrigation and reduce evaporation,90-102pp (in Persian)
17. Tokar, A. S and P. A. Johnson . 1999 . Rainfall- Runoff modeling using artificial neural networks. Journal of Hydrology Engineering, 3(1): 232-239.
18. Wang, D., A.A. Safavi and J.A. Romagnoli .2000 . Wavelet-based adaptive robust M-estimator for non-linear system identification. AIChE Journal, 46(8): 1607-1615.
19. Yar Mohammadi, A., M. Chit Sazan, K. Rangzan and J. Mozafari Zadeh. 2006. Using artificial neural networks for simulate the water quality of river floodplains. First Conference on Environmental Engineering, 68-75pp (In Persian).
20. Zhu, Y.M., X.X. Lu and Y. Zhou . 2007. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjian River in the Upper Yangtze Catchment. Geomorphology, 84(1): 111-125.
21. Banejad, H., M . Kamali, K . Amirmoradi and E. Olyaie. 2014. Forecasting Some of the Qualitative Parameters of Rivers Using Wavelet Artificial Neural Network Hybrid (W-ANN) Model )Case of study: Jajroud River of Tehran and Gharaso River of Kermanshah). Iranian Journal of Health and Environment, 6(3): 277-294 (In Persian).
22. Dastorani, M.T., K.H. AzimiFashi and A. Talebi. 2011. Estimation of Suspended Sediment Using Journal of Artificial Neural Network. Watershed Management Research, 3(6): 61-74 (In Persian).
23. Dayhoff, J.E. 1990. Neural Network Principles: New York: Prentice-Hall International,650pp.
24. Eshghi, P., J. Farzad Mehr, M.T. Dastorani and Z. Arab Asadi.2017. The Effectiveness of Intelligent Models in Estimating the River Suspended Sediments (Case Study: Babaaman Basin, Northern Khorasan). Watershed Management Research, 7(14) :88-95(In Persian). [DOI:10.29252/jwmr.7.14.95]
25. Faryadi, S., K. Shahedi and M. Nabatpoor. 2013. Investigation of Water Quality Parameters in Tadjan River using Multivariate Statistical Techniques. Journal of Watershed Management, 6: 75-92 ( In Persian ).
26. Gazzaz, N.M., M.K. Yusoff, A. Zaharin Aris, H. Juahir and M.F. Ramli. 2012. Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors. Journal of Marine Pollution Bulletin, 64(1): 2409-2420. [DOI:10.1016/j.marpolbul.2012.08.005]
27. Ghorbani, M.A. and R. Dehghani. 2017. Comparison of Bayesianneural Network, Artificial Neural Network Gene Expression Programming in River Water Quality (Case Study: Belkhviachay river). Watershed Management Research,8(15): 13-24 (In Persian).
28. Khanna, T.1990. Foundation of neural networks: Addison-Wesley Series in New Horizons in Technology: New York: Addison-Wesley,540pp.
29. Kaveh, A. and A. Iran Manesh. 2005. Artificial neural network in the optimization of structures: Building and Housing Research Center,112-120pp (In Persian)
30. Maier, H.R. and G.C. Dandy. 1996. The use of artificial neural networks for the prediction of water quality parameters. Water Resources Research, 32(4): 1013-.1022. [DOI:10.1029/96WR03529]
31. Najah, A., A. Elshafie, O. Karim and O. Jaffar.2009. Prediction of Johor river water quality parameters using artificial neural networks. European Journal of scientific research, 28(4): 422-435.
32. Safavi, A.A. and J.A. Romania.1997. Application of wavelet-based neural networks to modelling and optimisation of an experimental distillation column. (IFAC Journal of) Engineering Applications of Artificial Intelligence,10(3): 301-313. [DOI:10.1016/S0952-1976(97)00009-2]
33. Saf Sheken, F., N. Pir Moradian and R. Sharifian. 2012. Simulation of rainfall-runoff hydrograph and the use of artificial neural network model of rainfall in the catchment kasilian. Iran-Watershed Management Science & Engineering, 5(15): 1-10 (In Persian)
34. Sayadi, H., A. Olad Ghafari, A. Faalian and A. A. Sadr aldini. 2009. Comparison of RBF and MLP Neural Networks Performance for Estimation of Reference Crop Evapotranspiration. Soil and Water, 19(2): 1-12 (In Persian)
35. Singh, K.P., A. Basant, A. Malik and G. Jain .2009. Artificial neural network modeling of the river water quality-A Case Study. Journal of Ecological Modeling, 220(2): 888-895. [DOI:10.1016/j.ecolmodel.2009.01.004]
36. Taklifi , A and G. Asadolah Fardi .2009. Comparison two models RNN and mlp for predict the amount of salt in AjiChay. Tenth Seminar irrigation and reduce evaporation,90-102pp (in Persian)
37. Tokar, A. S and P. A. Johnson . 1999 . Rainfall- Runoff modeling using artificial neural networks. Journal of Hydrology Engineering, 3(1): 232-239. [DOI:10.1061/(ASCE)1084-0699(1999)4:3(232)]
38. Wang, D., A.A. Safavi and J.A. Romagnoli .2000 . Wavelet-based adaptive robust M-estimator for non-linear system identification. AIChE Journal, 46(8): 1607-1615. [DOI:10.1002/aic.690460812]
39. Yar Mohammadi, A., M. Chit Sazan, K. Rangzan and J. Mozafari Zadeh. 2006. Using artificial neural networks for simulate the water quality of river floodplains. First Conference on Environmental Engineering, 68-75pp (In Persian).
40. Zhu, Y.M., X.X. Lu and Y. Zhou . 2007. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjian River in the Upper Yangtze Catchment. Geomorphology, 84(1): 111-125. [DOI:10.1016/j.geomorph.2006.07.010]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb