دوره 12، شماره 24 - ( پاییز و زمستان 1400 1400 )                   جلد 12 شماره 24 صفحات 181-170 | برگشت به فهرست نسخه ها


XML English Abstract Print


بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران
چکیده:   (2197 مشاهده)
چکیده مبسوط
مقدمه و هدف: تغییر کاربری اراضی عامل اصلی ایجاد تغییرات در ذخیره­ی کربن­آلی و نیتروژن خاک و چرخه­ی جهانی کربن است. بررسی تغییرات ایجاد شده در میزان ذخیره­ ی کربن­آلی و نیتروژن خاک، پس از جنگل­کاری و مرتع ­کاری همراه با سامانه ­ی پخش ­سیلاب در اراضی شنی دشت گربایگان فسا واقع در جنوب­ شرقی استان فارس، هدف این پژوهش بود.
مواد و روش­ ها: از کاربری­ های جنگل دست­ کاشت آکاسیا، اوکالیپتوس، آتریپلکس و مرتع در دو وضعیت با پخش ­سیلاب و بدون پخش­ سیلاب، در مجموع 45 نمونه­ ی مرکب خاک از عمق 30-0 سانتی­متری برداشت شد و درصد کربن آلی و نیتروژن ­کل خاک در آزمایشگاه اندازه ­گیری گردید. سپس، میزان ذخیره­ ی ­کربن و نیتروژن محاسبه شد و ارزش اقتصادی آن­ها با ­روش مالیات بر کربن تعیین گردید. داده ­ها با استفاده از نرم­ افزار SAS به ­صورت آزمایش فاکتوریل در قالب طرح آماری بلوک­ های کامل تصادفی، تجزیه و تحلیل شده و میانگین­ ها با آزمون دانکن در سطح 5 درصد مقایسه شدند.
یافته ­ها: نتایج نشان داد اثر پخش ­سیلاب بر درصد کربن­ آلی و میزان ذخیره ­ی کربن­ آلی در خاک در سطح یک درصد معنی­ دار شده، بر درصد نیتروژن­ کل معنی ­دار نگردیده ولی اثر آن بر میزان ذخیره­ ی نیتروژن در سطح پنج درصد معنی­ دار شده است. تأثیر کاربری (نوع پوشش ­گیاهی) بر همه این شاخص­ ها در سطح یک درصد معنی­ دار گردیده است. اثر متقابل پخش ­سیلاب و کاربری بر درصد کربن ­آلی و میزان ذخیره­ ی نیتروژن خاک در سطح یک درصد معنی­ دار شده ولی تأثیر آن بر میزان ذخیره­ ی کربن و درصد نیتروژن­ کل معنی ­دار نشده است. میزان ذخیره­ ی کربن ­آلی در خاک کاربری­ های آکاسیا، اوکالیپتوس، آتریپلکس و مرتع، به ­ترتیب از 10/23، 22/49، 12/03 و 6/21 مگاگرم در هکتار در شرایط بدون پخش ­سیلاب، به­ ترتیب به 23/14، 40/23، 24/12 و 13/96 مگاگرم در هکتار در شرایط پخش ­سیلاب افزایش یافت. پخش ­سیلاب بر این عرصه ­ها، ارزش اقتصادی ذخیره­ ی کربن و نیتروژن را به ­ترتیب به­ میزان 53/59، 48/00، 75/46 و 43/52 درصد افزایش داد.
نتیجه ­گیری: به­ طور میانگین، پخش­ سیلاب باعث افزایش 54/31 درصدی ارزش اقتصادی مجموع ذخیره ­ی کربن و نیتروژن در خاک گردید.
 
متن کامل [PDF 968 kb]   (422 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: حفاظت آب و خاک
دریافت: 1399/11/12 | ویرایش نهایی: 1400/12/3 | پذیرش: 1400/1/18 | انتشار: 1400/6/10

فهرست منابع
1. Amelung, W., S. Brodowski, A. Sandhage Hofmann and R. Bol. 2008. Combining biomarker with stable isotope analysis for assessing the transformation and turnover of soil organic matter. Adv. Agron. 100: 155-250. [DOI:10.1016/S0065-2113(08)00606-8]
2. Andreetta, A., M.F. Dignac and S. Carnicelli. 2013. Biological and physico-chemical processes influence cutin and suberin biomarker distribution in two Mediterranean forest soil profiles. Biogeochemistry, 112: 41-58. [DOI:10.1007/s10533-011-9693-9]
3. Azadi Rimaleh, A., S.M. Hojati, H. Jalilvand and H. Naghavi. 2014. Investigation on soil carbon sequestration and understory biodiversity of hard wood and soft wood plantations of Khoramabad city (Makhamalkoh site). Iranian Journal of Forest and Poplar Research, 21(4): 702-715 (In Persian).
4. Badgery, W.B., A.T. Simmons, B.M. Murphy, A. Rawson, K.O. Andersson, V.E. Lonergan and R. Van de Ven. 2013. Relationship between environmental and land-use variables on soil carbon levels at the regional scale in central New South Wales, Australia. Soil Research, 51: 645-656. [DOI:10.1071/SR12358]
5. Badeian, Z. 2006. Relation between carbon stock and pH in the organic and mineral soil layers of a mixed forest of beech. A master thesis in faculty of natural forest, Tehran University, 69 pp (In Persian).
6. Berg, B. 2014. Decomposition patterns for foliar litter - a theory for influencing factors. Soil Biol Biochem, 78: 222-232. [DOI:10.1016/j.soilbio.2014.08.005]
7. Berg, B., M.P. Davey, A. De Marco, B. Emmett, M. Faituri, S.E. Hobbie, M.B. Johansson, C. Liu, C. McClaugherty, L. Norell, F.A. Rutigliano, L. Vesterdal and A.V. De Santo. 2010. Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry, 100: 57-73. [DOI:10.1007/s10533-009-9404-y]
8. Berthrong, S.T., G. Pin˜eiro, E.G. Jobba'gy and R.B. Jackson. 2012. Soil C and N changes with afforestation of grasslands across gradients of precipitation and plantation age. Ecological Applications, 22: 76-86. [DOI:10.1890/10-2210.1]
9. Birouste, M., E. Kazakou, A. Blanchard and C. Roumet. 2012. Plant traits and decomposition: are the relationships for roots comparable to those for leaves. Ann Bot, 109: 463-472. [DOI:10.1093/aob/mcr297]
10. Bremner, J.M. and C.S. Mulvaney. 1982. Nitrogen-Total. In: Page, A.L., Ed., Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, 595-624. [DOI:10.2134/agronmonogr9.2.2ed.c31]
11. Callesen, I., J. Liski, K. Raulund-Rasmussen, M.T. Olsson, L. Tau-Strand, L. Vesterdal and C.J. Westman. 2003. Soil carbon stores in Nordic well-drained forest soils-relationships with climate and texture class. Global Change Biology, 9: 358-370. [DOI:10.1046/j.1365-2486.2003.00587.x]
12. Carter, M.R. 2002. Soil quality for sustainable land management: organic matter and aggregation interactions that maintain soil functions. Agronomy Journal, 94: 38-47. [DOI:10.2134/agronj2002.3800]
13. Chang, X.F., S.P. Wang, X.X. Zhu, S.J. Cui, C.Y. Luo, Z.H. Zhang and A. Wilkes. 2014. Impacts of management practices on soil organic carbon in degraded alpine meadows on the Tibetan Plateau. Jour. Biogeosciences Discuss, 11: 417-440. [DOI:10.5194/bgd-11-417-2014]
14. Chapela, I.H., L.J. Osher, T.R. Horton and M.R. Henn. 2001. Ectomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion. Soil Biology and Biochemistry, 33: 1733-1740. [DOI:10.1016/S0038-0717(01)00098-0]
15. Chen, X. and Q. Hu. 2004. Groundwater influences on soil moisture and surface evaporation. Journal of Hydrology, 297: 285-300. [DOI:10.1016/j.jhydrol.2004.04.019]
16. Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C. Le Quéré, R.B. Myneni, S. Piao and P. Thornton, 2013. Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
17. Clemmensen, K.E., A. Bahr, O. Ovaskainen, A. Dahlberg, A. Ekblad, H. Wallander, J. Stenlid, R.D. Finlay, D.A. Wardle and B.D. Lindahl. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 339: 1615-1618. [DOI:10.1126/science.1231923]
18. Clemmensen, K.E., R.D. Finlay, A. Dahlberg, J. Stenlid, D.A. Wardle and B.D. Lindahl. 2015. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol, 205: 1525-1536. [DOI:10.1111/nph.13208]
19. Conant, R.T., K. Paustian and E.T. Elliott. 2001. Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications, 11: 343-355. [DOI:10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2]
20. Cotrufo, M.F., J.L. Soong, A.J. Horton, E.E. Campbell, M. Haddix, D.H. Wall and A.J. Parton. 2015. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci, 8: 776-780. [DOI:10.1038/ngeo2520]
21. Davidson, E. and I. Ackerman. 1993. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry, 20: 161-193. [DOI:10.1007/BF00000786]
22. Derrien, D., C. Marol, M. Balabane and J. Balesdent. 2006. The turnover of carbohydrates in a cultivated soil estimated by 13C natural abundances. Eur. J. Soil Sci, 57: 547-557. [DOI:10.1111/j.1365-2389.2006.00811.x]
23. Dignac, M.F., I. Kögel-Knabner, K. Michel, E. Matzner and H. Knicker. 2002. Chemistry of soil organic matter as related to C/N in Norway spruce forest (Picea abies (L) karst.) floors and mineral soils. J Plant Nutr Soil Sci, 165: 281-289. https://doi.org/10.1002/1522-2624(200206)165:3<281::AID-JPLN281>3.0.CO;2-A [DOI:10.1002/1522-2624(200206)165:33.0.CO;2-A]
24. Dinakaran, J. and N.S.R. Krishnayya. 2008. Variations in type of vegetal cover and heterogeneity of soil organic carbon in affecting sink capacity of tropical soils, Current Science, 94(9): 1144-1150.
25. Egerton-Warburton, L.M., J.I. Querejeta, M.F. Allen and S.L. Finkelman. 2005. Mycorrhizal Fungi, In: Encyclopedia of Soils in the Environment, 533-542. [DOI:10.1016/B0-12-348530-4/00455-0]
26. Fernandez, C.W. and P.G. Kennedy. 2015. Moving beyond the black-box: fungal traits, community structure, and carbon sequestration in forest soils. New Phytol, 205: 1378-1380. [DOI:10.1111/nph.13289]
27. Fernandez, C.W., J.A. Langley, S. Chapman, M.L. McCormack and R.T. Koide. 2016. The decomposition of ectomycorrhizal fungal necromass. Soil Biol Biochem, 93: 38-49. [DOI:10.1016/j.soilbio.2015.10.017]
28. Ghahari, G.R. 2019. Vegetation monitoring of Kowsar research aquifer management station, Annual report of research project, Annual Report for Soil Conservation and Watershed Management Research Institute, 55 pp (In Persian).
29. Gougoulias, C., J.M. Clark and L.J. Shaw. 2014. The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture, 94(12): 2362-2371. [DOI:10.1002/jsfa.6577]
30. Guo, J., B. Wang, G. Wang, Y. Wu and F. Cao. 2019. Afforestation and agroforestry enhance soil nutrient status and carbon sequestration capacity in eastern China. Land Degradation and Development, 31(3): 392-403. [DOI:10.1002/ldr.3457]
31. Johnson, D.W. and P.S. Curtis. 2001. Effects of forest management on soil C and N storage: meta- analysis. Forest Ecology and Management, 140: 227-238. [DOI:10.1016/S0378-1127(00)00282-6]
32. Jones, D.L., C. Nguyen and R.D. Finlay. 2009. Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant and Soil, 321: 5-33. [DOI:10.1007/s11104-009-9925-0]
33. Keiluweit, M., P. Nico, M.E. Harmon, J. Mao, J. Pett-Ridge and M. Kleber. 2015. Long-term litter decomposition controlled by manganese redox cycling. Proceedings of the National Academy of Sciences, 112: 5253-5260. [DOI:10.1073/pnas.1508945112]
34. Kowsar, S.A. 1992. Desertification control through floodwater spreading in Iran. Unasylva, 168(43): 27-30.
35. Laganière, J., D.A. Angers and D. Par. 2010. Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Global Change Biology, 16: 439-453. [DOI:10.1111/j.1365-2486.2009.01930.x]
36. Lal, R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma, 123: 1-22. [DOI:10.1016/j.geoderma.2004.01.032]
37. Langley, J.A., S.K. Chapman and B.A. Hungate. 2006. Ectomycorrhizal colonization slows root decomposition: the post-mortem fungal legacy. Ecol Lett, 9: 955-959. [DOI:10.1111/j.1461-0248.2006.00948.x]
38. Lehmann, J. and M. Kleber. 2015. The contentious nature of soil organic matter. Nature, 528: 60-68. [DOI:10.1038/nature16069]
39. Lei, Z., D. Yu, F. Zhou, Y. Zhang, D. Yu, Y. Zhou and Y. Han. 2019. Changes in soil organic carbon and its influencing factors in the growth of Pinus sylvestris var. mongolica plantation in Horqin Sandy Land, Northeast China. Sci Rep, 11;9(1): 16543 [DOI:10.1038/s41598-019-52945-5]
40. Li, D., S. Niu and Y. Luo. 2012. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytologist, 195: 172-181. [DOI:10.1111/j.1469-8137.2012.04150.x]
41. Liu, S.G., N. Bliss., E. Sundquist and T.G. Huntington. 2003. Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition. Global Biogeochemical Cycles, 17(2): 1074. [DOI:10.1029/2002GB002010]
42. Machinet, G.E., I. Bertrand, Y. Barriere, B. Chabbert and S. Recous. 2011. Impact of plant cell wall network on biodegradation in soil: role of lignin composition and phenolic acids in roots from 16 maize genotypes. Soil Biol Biochem, 43: 1544-1552. [DOI:10.1016/j.soilbio.2011.04.002]
43. Mahmoudi Taleghani, E., G. Zahedi Amiri, E. Adeli and K. Sagheb Talebi. 2007. Assessment of carbon sequestration in soil layers of managed forest. Iranian journal of Forests and Poplar Research, 15(3): 241-252 (In Persian).
44. Mao, R., D. Zeng., Y. Hu., L. Li and D. Yang. 2010. Soil organic carbon and nitrogen stocks in an age-sequence of poplar stands planted on marginal agricultural land in Northeast China. Plant and Soil, 332: 277-287. [DOI:10.1007/s11104-010-0292-7]
45. Martins, M.R. and D.A. Angers. 2015. Different plant types for different soil ecosystem services. Geoderma, 237-238: 266-269. [DOI:10.1016/j.geoderma.2014.09.013]
46. Mathieu, J.A., C. Hatté, J. Balesdent and E. Parent. 2015. Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles. Glob Chang Biol, 21: 4278-4292. [DOI:10.1111/gcb.13012]
47. Mc Lauchlan, K. 2006. The nature and longevity of agricultural impacts on soil carbon and nutrients: a review. Ecosystems, 9: 1364-1382. [DOI:10.1007/s10021-005-0135-1]
48. Meersmans, J., B. Van Wesemael, F. De Ridder, M. Fallasdotto, S. Debaets and M. Vanmolle. 2009. Changes in organic carbon distribution with depth in agricultural soils in northern Belgium, 1960-2006. Global Change Biology, 15(11): 2739-2750. [DOI:10.1111/j.1365-2486.2009.01855.x]
49. Moslemi, S M., S.Gh. Jalali, S.M. Hojjati and Y. Kooch. 2020. The effect of different forest types on soil properties and biodiversity of grassland cover and regeneration in central hyrcanian forests (Case Study: Seri-Alandan-Sari). Ecology of Iranian Forests, 7(4): 10-27 (In Persian). [DOI:10.29252/ifej.7.14.10]
50. Murty, D., M.U.F. Kirschbaum, R.E. Mc Murtrie and H. Mc Gilvray. 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology, 8: 105-123. [DOI:10.1046/j.1354-1013.2001.00459.x]
51. Naderi, A., S.A. Kowsar and A.A. Sarafraz. 2000. Reclamation of a sandy desert through floodwater spreading. I. sediment induced changes in selected soil chemical and physical properties. Journal of Agricultural Science and Technology, 2: 9-20.
52. Nelson, D.W. and L.P. Sommers. 1986. Total carbon, organic carbon and organic matter, In: Page, A.L. (ed.), Methods of Soil Analysis: Part 2, American Society of Agronomy and Soil Science Society of America Journal, 9: 537-579.
53. Nobakht, E., M.R. Pourmajidian, S. Hodjati and A. Fallah. 2010. Comparison of carbon sequestration in the pure plantations of conifer and broadleaves (Case study: plantation plan of Dehmian, Mazandran). 11 pp (In Persian).
54. Pan, G., H. Lu, L. Li, J. Zheng, X. Zhang, K. Cheng, X. Liu and Z.J. Bian Rongjun. 2015. Soil Carbon Sequestration with Bioactivity: A New Emerging Frontier for Sustainable Soil Management. Advances in Earth Science, 30(8): 940-951.
55. Parvizi, Y. and M. Goji. 2013. The effect of rainfed management factors on soil organic carbon in the Merk basin of Kermanshah. Journal of Land Management, 1(1): 81-89 (In Persian).
56. Post, W.M. and K.C. Kwon. 2000. Soil carbon sequestration and land use change: processes and potential. Global Change Biology, 6: 317-327. [DOI:10.1046/j.1365-2486.2000.00308.x]
57. Ren, L., H. Wang, G. Ding, G. Gao and X. Yang. 2012. Effects of Pinus tabulaeformis Carr. plantation density on soil organic carbon and nutrients characteristics in rocky mountain area of northern China. Arid Land Geography, 35: 456-464.
58. Rivers, N. 2014. The Case for a carbon tax in Canada, Canada 2020. Article available athttp://canada2020.ca/canada-carbon-tax/. [DOI:10.2139/ssrn.2640599]
59. Rousta, M.J. 2007. Study of bacterial population in different land uses of soil and flood spreading. Iranian Journal of Soil and Water Sciences, 21(1): 121-128 (In Persian).
60. Sadeghi, A., A. Salehi and S.A Mousavi Koupar. 2015. Effect of poplar monoculture and poplar with peanut as an agroforestry cultivation on soil chemical properties. Ecology of Iranian Forests, 3(6): 28-35 (In Persian).
61. Sanderman, J. and J.A. Baldock. 2010. Accounting for soil carbon sequestration innational inventories: a soil scientist's perspective. Environmental Research Letters, 5(3): 1-21. [DOI:10.1088/1748-9326/5/3/034003]
62. Schimel, D.S., B.H. Braswell, E.A. Holland, R. Mc Keown, D.S. Ojima, T.H. Painter, W.J. Parton and A.R. Townsend. 1994. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycles, 8(3): 279-293. [DOI:10.1029/94GB00993]
63. Schlesinger, W.H. and E.S. Bernhardt. 2013. Biogeochemistry: An Analysis of Global Change (3rd edn). Academic Press, Elsevier, New York.
64. Schmidt, M.W.I., M.S. Torn, S. Abiven, T. Dittmar, G. Guggenberg, I.A. Janssens, M. Kleber, I. Kögel-Knabner, J. Lehmann, M. Manning, P. Nannipieri, D.P. Rasse, S. Weiner and S.E. Trumbore. 2011. Persistence of soil organic matter as an ecosystem property. Nature, 478: 49-56. [DOI:10.1038/nature10386]
65. Shabanian, N., M. Heydari and M. Zeinivandzadeh. 2010. Effect of afforestation with broad leaved and conifer species on herbaceous diversity and some physico-chemical properties of soil (Case study: Dushan afforestation-Sanandaj). Journal of Forest and Poplar Research, 18(3): 437-446 (In Persian).
66. Shen, H., W. Zhang, X. Yang, X. Liu, J. Cao, X. Zeng, X. Zhao, X. Chen and W. Zhang. 2014. Carbon storage capacity of different plantation types under sandstorm source control program in Hebei Province, China. Chinese Geographical Science, 24: 454-460. [DOI:10.1007/s11769-014-0699-9]
67. Shi, J. and L. Cui. 2010. Soil carbon change and its affecting factors following afforestation in China. Landscape and Urban Planning, 98: 75-85. [DOI:10.1016/j.landurbplan.2010.07.011]
68. Snyder, C.S., T.W. Bruulsema, T.L. Jensen and P.E. Fixen. 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems & Environment, 133: 247-266. [DOI:10.1016/j.agee.2009.04.021]
69. Thevenot, M., M.F. Dignac and C. Rumpel. 2010. Fate of lignins in soil: a review. Soil Biol Biochem, 42: 1200-1211. [DOI:10.1016/j.soilbio.2010.03.017]
70. UNDP. 2000. Carbon sequestration in the decertified rangelands of Hossein Abad, through community based management, program coordination, pp: 1-7.
71. Varamesh, S., S.M. Hosseini, N. Abdi and M. Akbarinia. 2010. Increment of soil carbon sequestration due to forestation and its relation with some physical and chemical factors of soil. Iranian Journal of Forest, 2(1): 25-35 (In Persian).
72. Walter, K., A. Don and H. Flessa. 2015. No general soil carbon sequestration under Central European short rotation coppices. Global Change Biology Bioenergy, 7: 727-740. [DOI:10.1111/gcbb.12177]
73. Wang, Sh., X. Wang and Zh. Ouyang. 2012. Effects of land use, climate, topography and soil properties on regional soil organic carbon and total nitrogen in the upstream watershed of Miyun Reservoir, North China. Journal of Environmental Sciences, 24(3): 387-395. [DOI:10.1016/S1001-0742(11)60789-4]
74. Wang, X., C. Wang and Y. Han. 2015. Effects of tree species on soil organic carbon density: A common garden experiment of five temperate tree species. Chinese Journal of Plant Ecology, 39: 1033-1043. [DOI:10.17521/cjpe.2015.0100]
75. Yang, Y., A. Mohammat, J. Feng, R. Zhou and J. Fang. 2007. Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry, 84: 131-141. [DOI:10.1007/s10533-007-9109-z]
76. Yazdian, A.R. and S.A. Kowsar. 2003. The Agha Jari Formation: A potential source of ammonium and nitrate nitrogen fertilizers. Journal of Agricultural Sciences and Technology, 5: 153-163.
77. Zarafshar, M., M.J. Rousta, M. Matinizadeh, S.K. Bordbar, K. Enayati, Y. Kooch, M. Nehgahdar Saber and A. Abbasi. 2020. Comparison of carbon and nitrogen sequestration in soils under plantations, natural forest, and agricultural farm land uses in Arjan Plain in the Fars Province. Ecology of Iranian Forest, 8(16): 165-172 (In Persian).
78. Zhao, W., Z.M. Hu, H. Yang, L.M. Zhang, Q. Guo, Z.Y. Wu, D.Y. Liu and Sh.G. Li. 2016. Carbon density characteristics of sparse Ulmus pumila forest and Populus simonii plantation in Onqin Daga Sandy Land and their relationships with stand age. Chinese Journal of Plant Ecology, 40(4): 318-326. [DOI:10.17521/cjpe.2015.1080]
79. Zhao, X., X. Sun, X. Kang and H. Wang. 2012. Dynamics of soil organic carbon and total nitrogen contents in short-rotation triploid Populus tomentosa plantations. Acta Ecologica Sinica, 32: 4714-4721. [DOI:10.5846/stxb201106160816]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.