1. Allen, M. R., Babiker, M., Chen, Y., de Coninck, H., Connors, S., van Diemen, R., & Zickfeld, K. (2018). Summary for policymakers. In Global Warming of 1.5: An IPCC Special Report on the impacts of global warming of 1.5C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC.
2. Almazroui, M., Islam, M. N., Saeed, F., Saeed, S., Ismail, M., Ehsan, M. A., & Barlow, M. (2021). Projected changes in temperature and precipitation over the United States, Central America, and the Caribbean in CMIP6 GCMs. Earth Systems and Environment, 5(1), 1-24. [
DOI:10.1007/s41748-021-00199-5]
3. Almedeij, J. (2014). Drought analysis for Kuwait using standardized precipitation index. The Scientific World Journal, 2014, 451841. DOI: 10.1155/2014/451841 [
DOI:10.1155/2014/451841]
4. Avand, M., Moradi H. R., & Ramazanzadeh Lasboyee, M. (2021). Spatial prediction of future flood risk: an approach to the effects of climate change. Geosciences, 11(1), 25. DOI: 10.3390/geosciences11010025 [
DOI:10.3390/geosciences11010025]
5. Bi, D., Dix, M., Marsland, S., & Puri, K. (2012). The ACCESS coupled model: description, control climate and evaluation. Australian Meteorological and Oceanographic, 63, 41-64. [
DOI:10.22499/2.6301.004]
6. Bonaccorso, B., Bordi, I., Cancelliere, A., Rossi, G., & Sutera, A. (2003) Spatial variability of drought: an analysis of the SPI in Sicily. Water Resource Management, 17, 273-296. DOI: 10.1023/A:1024716530289 [
DOI:10.1023/A:1024716530289]
7. Cao, J., Wang, B., Yang, Y. M., … & Wu, L. (2018). The NUIST Earth System Model (NESM) version 3: description and preliminary evaluation. Geoscientific Model Development, 11, 2975-2993. DOI: 10.5194/gmd-11-2975-2018 [
DOI:10.5194/gmd-11-2975-2018]
8. Cea, L., & Costabile, P. (2022). Flood Risk in Urban Areas: Modelling, Management and Adaptation to Climate Change. A Review. Hydrology, 9(3), 50. DOI: 10.3390/hydrology9030050 [
DOI:10.3390/hydrology9030050]
9. Cook, B. I., Mankin, J. S., Marvel, K., Williams, A. P., Smerdon, J. E., & Anchukaitis, K. J. (2020). Twenty‐first century drought projections in the CMIP6 forcing scenarios. Earth's Future, 8(6),
https://doi.org/10.1029/2019EF001461 [
DOI:e2019EF001461]
10. Del-Toro-Guerrero, F. J., & Kretzschmar, T. (2020). Precipitation-temperature variability and drought episodes in northwest Baja California, México. Journal of Hydrology: Regional Studies, 27, 100653. DOI: 10.1016/j.ejrh.2019.100653 [
DOI:10.1016/j.ejrh.2019.100653]
11. Diallo, I., Xue, Y., Li, Q., DeSales, F., & Li, W. (2019). Dynamical downscaling the impact of spring Western US land surface temperature on the 2015 flood extremes at the Southern Great Plains: effect of domain choice, dynamic cores and land surface parameterization. Climate Dynamics, 53(1), 1039-1061. DOI: 10.1007/s00382-019-04630-6 [
DOI:10.1007/s00382-019-04630-6]
12. Dosio, A., Jury, M. W., Almazroui, M., Ashfaq, M., Diallo, I., Engelbrecht, F. A., ..., & Tamoffo, A.T. (2021). Projected future daily characteristics of African precipitation based on global (CMIP5, CMIP6) and regional (CORDEX, CORDEX-CORE) climate models. Climate Dynamics, 57(11), 3135-3158. DOI: 10.1007/s00382-021-05859-w. [
DOI:10.1007/s00382-021-05859-w]
13. Duan, Z., Liu, J., Tuo, Y., Chiogna, G., & Disse, M. (2016). Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Science of the Total Environment, 573, 1536-1553. DOI: 10.1016/j.scitotenv.2016.08.213 [
DOI:10.1016/j.scitotenv.2016.08.213]
14. Easterling, D. R., Kunkel, K. E., Wehner M. F., & Sun, L. (2016). Detection and attribution of climate extremes in the observed record. Weather and Climate Extremes, 11, 17-27. DOI: 10.1016/j.wace.2016.01.001. [
DOI:10.1016/j.wace.2016.01.001]
15. Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937-1958. [
DOI:10.5194/gmd-9-1937-2016]
16. Fowler, H. J., Blenkinsop, S., Tebaldi, C. (2007). Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27(12), 1547-1578. [
DOI:10.1002/joc.1556]
17. Giorgi, F., & Lionello, P. (2008) Climate change projections for the Mediterranean region. Global and Planetary Change, 63, 90-104. [
DOI:10.1016/j.gloplacha.2007.09.005]
18. Greenwood, J. A., & Durand, D. (1960). Aids for fitting the gamma distribution by maximum likelihood. Technometrics, 2(1), 55-65. [
DOI:10.1080/00401706.1960.10489880]
19. Gumus, V., & Algin, H. M. (2017) Meteorological and hydrological drought analysis of the Seyhan−Ceyhan River basins. Turkey Meteorological Applications, 24, 62-73. [
DOI:10.1002/met.1605]
20. Habibullah, M. S., Din, B. H., Tan, S. H., & Zahid, H. (2022). Impact of climate change on biodiversity loss: global evidence. Environmental Science and Pollution Research, 29(1), 1073-1086. DOI: 10.1007/s11356-021-15702-8. [
DOI:10.1007/s11356-021-15702-8]
21. Huang, Y. F., Ang, J. T., Tiong, Y. J., Mirzaei, M., & Amin, M. Z. M. (2016). Drought forecasting using SPI and EDI under RCP-8.5 climate change scenarios for Langat River Basin, Malaysia. Procedia Engineering, 154, 710-717. DOI: 10.1016/j.proeng.2016.07.573 [
DOI:10.1016/j.proeng.2016.07.573]
22. Jahangir, M. H., Jahanpanah, M., Abolghasemi, M. (2020). Drought forecasting for future periods using LARS-WG model (Case study: Shiraz Station). Environmental and Water Engineering, 6(1), 69-82 (In Persian). DOI: 10.1016/10.22059/JTCP.2021.332432.670263
23. Kavwenje, S., Zhao, L., Chen, L., & Chaima, E. (2022). Projected temperature and precipitation changes using the LARS‐WG statistical downscaling model in the Shire River Basin, Malawi. International Journal of Climatology, 42(1), 400-415. [
DOI:10.1002/joc.7250]
24. Kendall, M. G. (1948). Rank correlation methods. Charles Griffin, London, England.
25. Kousari, M. R., Ahani, H., & Hendi-zadeh, R. (2013). Temporal and spatial trend detection of maximum air temperature in Iran during 1960-2005. Global and planetary change, 111, 97-110. DOI: 10.1016/j.gloplacha.2013.08.011. [
DOI:10.1016/j.gloplacha.2013.08.011]
26. Li, Y., Lu, H., Yang, K., Wang, W., Tang, Q., Khem, S., & Huang, Y. (2021). Meteorological and hydrological droughts in Mekong River Basin and surrounding areas under climate change. Journal of Hydrology. Regional Studies, 36, 100873. DOI: 10.1016/j.ejrh.2021.100873 [
DOI:10.1016/j.ejrh.2021.100873]
27. Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13(3), 1318. DOI: 10.3390/su13031318. [
DOI:10.3390/su13031318]
28. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the econometric society, 245-259. [
DOI:10.2307/1907187]
29. McKee, T. B., N. J. Doesken., & J. Kleist. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, 17(22), 179-183, Anaheim, California.
30. Naderi, M. (2020). Extreme climate events under global warming in northern Fars Province, southern Iran. Theoretical and Applied Climatology, 142(3-4), 1221-1243. DOI: 10.1007/s00704-020-03362-6 [
DOI:10.1007/s00704-020-03362-6]
31. Nadi, M., & M. Dastigerdi. (2022). Preparation of Mazandaran climate map by extended De Martonne climate classification method. In National Conference on Environmental Change using Remote Sensing Technology and GIS, Sari, Iran (In Persian).
32. Nadi, M., & Shiukhy Soqanloo, S. (2020). Comparison of SPI and SPImod in Drought Monitoring of Several Climatic Samples of Iran. Journal of Watershed Management Research, 11(21), 108-118 (In Persian). DOI: 10.52547/jwmr.11.21.108 [
DOI:10.52547/jwmr.11.21.108]
33. Nguvava, M., Abiodun, B. J., & Otieno, F. (2019). Projecting drought characteristics over East African basins at specific global warming levels. Atmospheric Research, 228, 41-54. DOI: 10.1016/j.atmosres.2019.05.008 [
DOI:10.1016/j.atmosres.2019.05.008]
34. O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., & Solecki, W. (2017). The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42, 169-180. DOI: 10.1016/j.gloenvcha.2015.01.004 [
DOI:10.1016/j.gloenvcha.2015.01.004]
35. Ortega, G., Arias, P. A., Villegas, J. C., Marquet, P. A., & Nobre, P. (2021). Present‐day and future climate over central and South America according to CMIP5/CMIP6 models. International Journal of Climatology, 41(15), 6713-6735. DOI: 10.1002/joc.7221. [
DOI:10.1002/joc.7221]
36. Osman, Y., Abdellatif, M., Al-Ansari, N., Knutsson, S., & Jawad, S. (2017). Climate change and future precipitation in an arid environment of the Middle East: Case study of Iraq. Journal of Environmental Hydrology, 25(3).
37. Ozdemir, D. (2022). The impact of climate change on agricultural productivity in Asian countries: a heterogeneous panel data approach. Environmental Science and Pollution Research, 1-13. DOI: 10.21203/rs.3.rs-264686/v1 [
DOI:10.21203/rs.3.rs-264686/v1]
38. Racsko, P., Szeidl, L., & Semenov, M. (1991). A serial approach to local stochastic weather models. Ecological Modelling, 57(1-2), 27-41. [
DOI:10.1016/0304-3800(91)90053-4]
39. Raziei, T., Saghafian, B., Paulo, A. A., Pereira, L. S., & Bordi, I. (2009). Spatial patterns and temporal variability of drought in western Iran. Water resources management, 23(3), 439-455. DOI: 10.1007/s11269-008-9282-4 [
DOI:10.1007/s11269-008-9282-4]
40. Raziei, T., Bordi, I., Pereira, L. S. (2013). Regional drought modes in Iran using the SPI: the effect of time scale and spatial resolution. Water Resour Manag 27, 1661-1674. DOI: 10.1007/s11269-012-0120-3 [
DOI:10.1007/s11269-012-0120-3]
41. Roshani, A., & Hamidi, M. (2022). Forecasting the effects of climate change scenarios on temperature and precipitation based on CMIP6 models (Case study: Sari station). Water and Irrigation Management, 11(4), 781-795 (In Persian).
42. Semenov, M. A., Barrow, E. M., & Lars-WG, A. (2002). A stochastic weather generator for use in climate impact studies. User Man Herts UK.
43. Semenov, M. A., & Barrow, E. M. (1997). Use of a stochastic weather generator in the development of climate change scenarios. Climatic Change, 35(4), 397-414. [
DOI:10.1023/A:1005342632279]
44. Semenov, M. A., Pilkington-Bennett, S., & Calanca, P. (2013). Validation of ELPIS 1980-2010 baseline scenarios using the observed European Climate Assessment data set. Climate Research, 57(1), 1-9. DOI: 10.3354/cr01164 [
DOI:10.3354/cr01164]
45. Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, 63(324), 1379-1389. [
DOI:10.1080/01621459.1968.10480934]
46. Sha, J., Li, X., & Yang, J. (2021). Estimation of Watershed Hydrochemical Responses to Future Climate Changes Based on CMIP6 Scenarios in the Tianhe River (China). Sustainability, 13(18), 10102. DOI: 10.3390/su131810102 [
DOI:10.3390/su131810102]
47. Sharma, M. A., & Singh, J. B. (2010). Use of probability distribution in rainfall analysis. New York Science Journal, 3(9), 40-49.
48. Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., & Winter, B. (2019). The Canadian earth system model version 5 (CanESM5. 0.3). Geoscientific Model Development, 12(11), 4823-4873. [
DOI:10.5194/gmd-12-4823-2019]
49. Talchabhadel, R., & Karki, R. (2022). Anticipated Shifting of Thermal and Moisture Boundary Under Changing Climate Across Nepal. In Mountain Landscapes in Transition. Springer, Cham, 219-233. DOI: 10.1007/978-3-030-70238-06 [
DOI:10.1007/978-3-030-70238-0_6]
50. Tavosi, T., Shoja, F., Hossein Abady, N. (2023). Evaluation of the Future Changes of Climatic Aridity Indices in the Central Iran Watershed under Climate Change Scenarios. Journal of Watershed Management Research, 14(27), 86-102 (In Persian). [
DOI:10.61186/jwmr.14.27.86]
51. Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485-498. DOI: 10.1175/BAMS-D-11-00094.1 [
DOI:10.1175/BAMS-D-11-00094.1]
52. Thom, H. C. (1958). A note on the gamma distribution. Monthly Weather Review, 86: 117-122.
https://doi.org/10.1175/1520-0493(1958)086<0117:ANOTGD>2.0.CO;2 [
DOI:10.1175/1520-0493(1958)0862.0.CO;2]
53. Tsakiris, G., & Vangelis, H. (2004). Towards a drought watch system based on spatial SPI. Water Resources Management, 18, 1-12. [
DOI:10.1023/B:WARM.0000015410.47014.a4]
54. Voldoire, A., Saint‐Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., & Waldman, R. (2019). Evaluation of CMIP6 deck experiments with CNRM‐CM6‐1. Journal of Advances in Modeling Earth Systems, 11(7), 2177-2213. DOI: 10.1029/2019MS001683 [
DOI:10.1029/2019MS001683]
55. Wilhite, D. A., Svoboda, M. D., & Hayes, M. J. (2007). Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water resources management, 21(5), 763-774. [
DOI:10.1007/s11269-006-9076-5]
56. Xin, X., Wu, T., Zhang, J., Yao, J., & Fang, Y. (2020). Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. International Journal of Climatology, 40(15), 6423-6440. DOI: 10.1002/joc.6590 [
DOI:10.1002/joc.6590]
57. Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., & Ishii, M. (2019). The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2. 0: Description and basic evaluation of the physical component. Journal of the Meteorological Society of Japan, Ser. II. DOI: 10.2151/jmsj.2019-051 [
DOI:10.2151/jmsj.2019-051]
58. Yazdandoost, F., Moradian, S., Izadi, A., & Aghakouchak, A. (2021). Evaluation of CMIP6 precipitation simulations across different climatic zones: Uncertainty and model intercomparison. Atmospheric Research, 250, 105369. DOI: 10.1016/j.atmosres.2020.105369 [
DOI:10.1016/j.atmosres.2020.105369]
59. Yokoyama, C., Takayabu, Y. N., Arakawa, O., & Ose., T. (2019). A study on future projections of precipitation characteristics around Japan in early summer combining GPM DPR observation and CMIP5 large-scale environments. Journal of Climate, 32(16), 5251-5274. DOI: 10.1175/JCLI-D-18-0656.1 [
DOI:10.1175/JCLI-D-18-0656.1]
60. Zamani, Y., Hashemi Monfared, S. A., & Hamidianpour, M. (2020). A comparison of CMIP6 and CMIP5 projections for precipitation to observational data: the case of Northeastern Iran. Theoretical and Applied Climatology, 142(3), 1613-1623. DOI: 10.1007/s00704-020-03406-x [
DOI:10.1007/s00704-020-03406-x]
61. Zabardast Rostami, H. A., Raeini Sarjaz, M., & Gholami Sefidkouhi, M. A. (2021). Assessment of Climate Change Effects on River Flow of Gelevard Dam Basin. Journal of Watershed Management Research, 12(24), 205-216 (In Persian). [
DOI:10.52547/jwmr.12.24.205]