دوره 15، شماره 2 - ( پاییز و زمستان 1403 )                   جلد 15 شماره 2 صفحات 118-105 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dastigerdi M, Nadi M, Shamgani Mashhadi B, Hatamipour M, Mahdavi amrei O. (2024). Analysis of Vegetation Trend in Mazandaran Province with an Emphasis on Land Use Changes Using MODIS NDVI Time Series. J Watershed Manage Res. 15(2), 105-118. doi:10.61186/jwmr.15.2.105
URL: http://jwmr.sanru.ac.ir/article-1-1251-fa.html
دستی گردی مرتضی، نادی مهدی، شامگانی مشهدی بهاره، حاتمی پور محدثه، مهدوی امرئی امید. تحلیل روند پوشش گیاهی در استان مازندران با تاکید بر تغییرات کاربری اراضی با استفاده از سری زمانی NDVI سنجنده مودیس پ‍‍ژوهشنامه مديريت حوزه آبخيز 1403; 15 (2) :118-105 10.61186/jwmr.15.2.105

URL: http://jwmr.sanru.ac.ir/article-1-1251-fa.html


1- گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
چکیده:   (366 مشاهده)
چکیده مبسوط
مقدمه و هدف: پوشش گیاهی یکی از اجزای اصلی در حفاظت از زیستکره بوده که به‌عنوان پیوند بین خاک، آب و جو عمل میکند. این مهم اهمیت زیادی در تأمین مواد آلی، تنظیم چرخه کربن و تبادل انرژی در سطح زمین دارد. در سال‌های اخیر، تغییرات اقلیمی و گرمایش جهانی، رویدادهای مکرری مانند سیل، دمای بالا و خشک‌سالی را ایجاد کرده که می‌تواند به بومسامانه‌های زمینی آسیب برساند. تغییرات آب‌وهوایی ناشی از تغییر اقلیم مستقیماً بر رشد پوشش گیاهی تأثیر می‌گذارد؛ از سوی دیگر، تغییرات پوشش گیاهی نیز با تنظیم آب، تبادل انرژی و غلظت دی‌اکسیدکربن به تغییرات آب‌وهوایی بازخورد نشان می‌دهد.
مواد و روش‌ها: پژوهش در استان مازندران که با هدف بررسی روند تغییرات پوشش گیاهی در منطقه موردمطالعه در طی دوره زمانی 2020-2001 صورت گرفت از داده‌های سری زمانی ترکیبی 16 روزه MODIS-NDVI به نام MOD13Q1 با اندازه تفکیک مکانی 250 متر استفاده شد؛ بنابراین در مجموع 920 تصویر NDVI مورد استفاده قرار گرفت. جهت بررسی روند ‌تغییرات‌ فعالیت ‌پوشش‌ گیاهی‌ و‌ معنی‌داری‌آن در‌ این پژوهش، روش ناپارامتری من-کندال‌ بهکار‌ گرفته شد. همچنین ارتباط روند تغییرات پوشش گیاهی با موقعیت شهرستان‌ها و جاده‌های اصلی و نیز تغییرات کاربری بررسی شد.
یافته‌ها: نتایج این تحقیق نشان داد از کل مساحت منطقه موردمطالعه 16 درصد منطقه روند کاهشی پوشش گیاهی داشته و مابقی روند افزایشی را نشان داد که البته روند کاهش و افزایش معنادار پوشش گیاهی در حدود اطمینان 95 درصد به‌ترتیب در 5 و 65 درصد از منطقه رخ‌داده است. بررسی نقشه روند تغییرات پوشش گیاهی نشان داد که بیشترین کاهش معنادار پوشش گیاهی در 20 سال گذشته در نواحی ساحلی، مناطق کم ارتفاع و بهخصوص در اطراف شهرهای بزرگ و جاده‌های اصلی ورودی به استان بهوقوع پیوسته است. البته کاهش پوشش گیاهی در اطراف کلان‌شهرها بهدلیل افزایش جمعیت و نیاز به توسعه شهری قابل‌انتظار بوده اما بررسی‌ها نشان داد که بیشترین کاهش معنادار پوشش گیاهی در شهرستان‌های محمودآباد (19 درصد)، بابلسر (17 درصد)، قائم‌شهر (10 درصد) و جویبار (9 درصد) بهوقوع پیوسته درحالی‌که شهرهایی مانند سرخرود، محمودآباد و بابلسر برخلاف جمعیت به‌مراتب کمتر نسبت به شهرهای ساری و قائم‌شهر در صدر کاهش پوشش گیاهی در 20 سال گذشته قرار دارند که متأسفانه دلیل آن نیاز به توسعه شهری ناشی از افزایش جمعیت نبوده و بلکه تغییرات شدید کاربری زمین‌های کشاورزی و باغات مرکبات و تبدیل آن به ویلاهای شخصی عامل اصلی کاهش پوشش گیاهی در یک منطقه وسیع است. همچنین در جهت تائید این واقعیت، با مقایسه نقشه روند پوشش گیاهی با راه‌های اصلی استان مشخص شد اطراف جاده‌های اصلی ورودی به استان مازندران بهخصوص در جاده‌های هراز و فیروزکوه و جاده فریم نیز کاهش شدید و معنادار پوشش گیاهی به وقوع پیوسته است. البته دراین‌بین نواحی اطراف جاده چالوس مساحت کمتری از کاهش پوشش گیاهی را نشان داده است. بررسی مناطق با روند مثبت پوشش گیاهی نشان داد که ارتفاعات استان بهخصوص ارتفاعات شرقی افزایش معنادار پوشش گیاهی را تجربه نموده و البته بخش‌های کمتری از ارتفاعات غربی افزایش معنادار پوشش گیاهی را نشان دادند و بیشتر شرایط بدون روند را در 20 سال گذشته طی کرده است که دلیل آن بهخاطر گرمایش اخیر جهانی و همچنین دماهای بیشتر در شرق استان نسبت به مناطق غربی است که درمجموع موجب شده در حال حاضر شرایط مناسب دمایی برای رشد پوشش گیاهی در ارتفاعات شرق استان فراهم گردد و بهنظر ارتفاعات غربی هنوز شرایط دمایی مناسبی برای رشد پوشش گیاهی ندارد.
نتیجه‌گیری: نتایج این تحقیق نشان داد که تغییرات پوشش گیاهی در استان مازندران تحت کنترل دو عامل طبیعی و انسانی قرار دارد که عامل طبیعی (اقلیم) بخصوص در ارتفاعات باعث افزایش پوشش گیاهی در 65 درصد مساحت استان شده است و بهنظر با افزایش دمای ناشی از گرمایشهای اخیر جهانی این امکان بهوجود آمده که شرایط زیستی برای گیاهان در ارتفاعات استان بهخصوص ارتفاعات شرقی فراهم گردد؛ اما عامل انسانی در حال از بین بردن پوشش گیاهی در سرتاسر استان بخصوص در مناطق توریستی و مناطق با دسترسی راحت بوده به‌طوری‌که هم در سواحل و اطراف کلان‌شهرها و هم در قلب جنگل‌های هیرکانی و در ارتفاعات نزدیک به جاده‌های اصلی روند معنادار کاهش پوشش گیاهی مشاهده شد. روند کاهش معنی‌دار پوشش گیاهی در 5 درصد از مساحت استان‌ بهوقوع پیوسته که این کاهش‌ها بیشتر در دشت‌ها و نوار ساحلی، ارتفاعات پایین و با شیب کم، حاشیه شهرها و جاده‌های منطقه موردمطالعه مشاهده شد. در مناطق حاشیه‌ای جاده‌های رامسر به استان غربی هم‌جوار، گرگان ساری، تهران چالوس، هراز و فیروزکوه نیز پوشش گیاهی در حال تخریب بوده که میتواند از عمده دلایل آن افزایش بار ترافیکی، تغییرات کاربری و ساخت اماکن تفریحی و ویلاسازی باشد. برمبنای نتایج این تحقیق تغییرات شدید کاربری در 20 سال اخیر بسیار مشهود بوده و در صورت ادامه روند انسانی تغییر کاربری ضمن از دست رفتن منابع آب‌وخاک، ممکن است در آینده‌ای نزدیک شاهد ضربات جبران‌ناپذیری به بوم سامانه‌های خزری باشیم.

 
متن کامل [PDF 1030 kb]   (223 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سنجش از دور و سامانه های اطلاعات جغرافيايی
دریافت: 1402/5/16 | پذیرش: 1402/10/26

فهرست منابع
1. Abdi, O., Shirvani, Z., & Buchroithner, M.F. (2018). Spatiotemporal drought evaluation of Hyrcanian deciduous forests and semi‐steppe rangelands using moderate resolution imaging spectroradiometer time series in Northeast Iran. Land Degradation & Development, 29, 2525- 2541. [DOI:10.1002/ldr.3025]
2. Abdolalizadeh, Z., Ebrahimi, A., & Mostafazadeh, R. (2019). Landscape pattern change in Marakan protected area, Iran. Reg Environmental Change, 19, 1683-1699. [DOI:10.1007/s10113-019-01504-9]
3. Abdolalizadeh, Z., Ghorbani, A., Mostafazadeh, R., & Moameri, M. (2020). Rangeland canopy cover estimation using Landsat OLI data and vegetation indices in Sabalan rangelands, Iran. Arabian Journal of Geosciences, 13, 1-13.‌ [DOI:10.1007/s12517-020-5150-1]
4. Akbarzadeh, M., & Mirhaji, S.T. (2006). Vegetation changes under precipitation in Steppic rangelands Rudshur. Iranian Journal of range and desert reaserch 13(3), 222-235.
5. Arefzadeh, M., Race Abbasi., H., Solar, M., Mahmoudzadeh, A., Shamsi, M., Farrokhi, H., Mohammadpour, T., Aghamalaei, E., Nodehi, F., & Shadloo, M. (2020), Khorasan Razavi Province, 10th grade, high school, Iran Textbook Publishing Company, Tehran, Iran, 15-3 (In Persian)
6. Bonan, G.B., (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444-1449. [DOI:10.1126/science.1155121]
7. Colditz, R.R., Ressl, R.A., & Bonilla-Moheno, M. (2015). Trends in 15-year MODIS NDVI time series for Mexico. In 8th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp). Jul.22-24 Annecy, France, pp. 1-4. [DOI:10.1109/Multi-Temp.2015.7245766]
8. Craine, J.M., Nippert, J.B., Elmore, A.J., Skibbe, A.M., Hutchinson, S.L., & Brunsell, N.A., (2012). Timing of climate variability and grassland productivity. PNAS, 109 (9), 3401-3405. [DOI:10.1073/pnas.1118438109]
9. Dastigerdi, M., Nadi, M., Sarjaz, M. R., & Kiapasha, K. (2022). Vegetation trend analysis using NDVI time series of Modis satellite in the northeast of Iran. Journal of Water and Soil Conservation, 29(1), 135-150 (In Persian(.
10. Dastigerdi, M., Nadi, M., Sarjaz, M. R., & Kiapasha, K. (2024). Trend analysis of MODIS NDVI time series and its relationship to temperature and precipitation in Northeastern of Iran. Environmental Monitoring and Assessment, 196(4), 1-16. [DOI:10.1007/s10661-024-12463-y]
11. De Beurs, K.M., & Henebry, G.M. (2005). Land surface phenology and temperature variation in the International Geosphere-Biosphere Program high-latitude transects. Global Change Biology, 11(5), 779-790. [DOI:10.1111/j.1365-2486.2005.00949.x]
12. De Jong, R., de Bruin, S., de Wit, A., Schaepman, M.E., & Dent, D.L. (2011). Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sensing of Environment, 115(2), 692-702. [DOI:10.1016/j.rse.2010.10.011]
13. Dubovyk, O., Landmann, T., Erasmus, B.F.N., Tewes, A., & Schellberg, J. (2015). Monitoring Vegetation Dynamics with Medium Resolution MODIS-EVI Time Series at Sub-Regional Scale in Southern Africa. International Journal of Applied Earth Observation and Geoinformation, 38, 175-183. [DOI:10.1016/j.jag.2015.01.002]
14. Fensholt, R., & Proud, S.R. (2012). Evaluation of earth observation based global long term vegetation trends - Comparing GIMMS and MODIS global NDVI time series. Remote Sensing of Environment, 119, 131-147. [DOI:10.1016/j.rse.2011.12.015]
15. Gutiérrez-Girón, A., Díaz-Pinés, E., Rubio, A., & Gavilán, R. G. (2015). Both altitude and vegetation affect temperature sensitivity of soil organic matter decomposition in Mediterranean high mountain soils. Geoderma, 237, 1-8.‌ [DOI:10.1016/j.geoderma.2014.08.005]
16. Hashemi Darreh Badami, S., Nouraei Sefat, A., Karimi, S., & theoretical, A. (2015) .Analysis of the development trend of urban heat island in relation to land use change / cover using the time series of Landsat images. Remote Sensing and Geographic Information System in Natural Resources, 6(3), 28-15 (In Persian(.
17. Hosseini S.M. (2010). Forest operations management and timber products in the Hyrcanian forests of Iran. FORMEC in Forest engineering: Meeting the needs of the society and the environment, July 11 - 14, Padova - Italy.
18. Jafari S.M., Zarre S. & Alavipanah S.K. (2013): Woody species diversity and forest structure from lowland to montane forest in Hyrcanian forest ecoregion. Journal of Mountain Science, 10, 609-620. [DOI:10.1007/s11629-013-2652-2]
19. Jafari, T., Maghami Moghim, Gh., & Azimian, M. (2020), North Khorasan Province, Tenth Grade, Secondary School, Iran Textbook Publishing Company, Tehran, Iran, 172 (In persian).
20. Jiang, W., Yuan, L., Wang, W., Cao, R., Zhang, Y., & Shen, W. (2015). Spatio-Temporal Analysis of Vegetation Variation in the Yellow River Basin. Ecological Indicator, 51, 117-126. [DOI:10.1016/j.ecolind.2014.07.031]
21. Kalbi S., Fallah A., & Shataee S.H. (2014). Estimation of forest attributes in the Hyrcanian forests, comparison of advanced space-borne thermal emission and reflection radiometer and satellite poure I'observation de la terre-high resolution grounding data by multiple linear, and classification and regression tree regression models. Journal of Applied Remote Sensing, 8, 083632. [DOI:10.1117/1.JRS.8.083632]
22. KC, A., & Ghimire, A. (2015). High-altitude plants in era of climate change: a case of Nepal Himalayas. Climate change impacts on high-altitude ecosystems, 177-187.‌ [DOI:10.1007/978-3-319-12859-7_6]
23. Keller, F., Kienast, F., & Beniston, M. (2000). Evidence of response of vegetation to environmental change on high-elevation sites in the Swiss Alps. Regional Environmental Change, 1, 70-77.‌ [DOI:10.1007/PL00011535]
24. Kendall, M. G. (1948). Rank Correlation Methods. New York, NY: Oxford University Press.
25. Kiapasha, K., Darvishsefat, A. A., Julien, Y., Sobrino, J. A., Zargham, N., Attarod, P., & Schaepman, M. E. (2017). Trends in phenological parameters and relationship between land surface phenology and climate data in the Hyrcanian Forests of Iran. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(11), 4961-4970.‌ [DOI:10.1109/JSTARS.2017.2736938]
26. Kiapasha, K., Darvishsefat, A.A., Zargham, N., Attarod, P., Nadi, M., & Schaepman, M. (2017a). Greening trend in the Hyrcanian forests using NOAA NADVI time series during 1981-2012. Forest and Wood Products, 70(3), 409-420.
27. Kim, J.Y., Rastogi, G., Do, Y., Kim, D.-K., Muduli, P.R., Samal, R.N., Pattnaik, A.K., & Joo, G.-J. (2015). Trends in a Satellite-Derived Vegetation Index and Environmental Variables in a Restored Brackish Lagoon. Glob Ecol. Conserv.4, 614-624. [DOI:10.1016/j.gecco.2015.10.010]
28. Luo, L., Ma, W., Zhuang, Y., Zhang, Y., Yi, S., Xu, J., & Zhang, Z. (2018). The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai-Tibet Engineering Corridor. Ecological Indicators, 93, 24-35. [DOI:10.1016/j.ecolind.2018.04.067]
29. Mann, H. B. 1945. Nonparametric tests against trend. Econometrica., 13, 245-259. [DOI:10.2307/1907187]
30. Marvie-Mohadjer, M. R. (2012). Silviculture. Tehran, University of Tehran Press, 400. (in Persian(
31. Masihpour, M., Darvish Sefat, A., & Rahmani, R. (2019). Analysis of long-term trend of vegetation changes using MODIS-NDVI time series (Case study: Kurdistan province). Forests and wood products (Iranian natural resources), 72(3), 193-204 (In persian).
32. Mirahsani, M., Salman Mahini, AR, Sufyanian, AR, Modares, R., Jafari, R. Mohammadi, J. (2017). Evaluation of Vegetation Water Storage Index (VSWI) Time series images of Madis sensor in drought monitoring of Gavkhooni watershed, Journal of Applied Ecology, 4, 47-31 (In Persian.(
33. Moradi, F., Mokhtari, M.H., & Ardakhni, A. (2013). "Compare of Techniques of urban areas and changes in land use optimization models to assess changes using remote sensing and GIS". International congress of Civil and Architectural Engineering Sustainable Urban Development. Tabriz (In Persian).
34. Nadi, M., & Dastigerdi, M. (2021). Preparation of climate map of Mazandaran province with extended Demarten method. the second national conference on environmental changes using remote sensing and GIS technology (In Persian(.
35. Naqinezhad A., & Zarezadeh S. (2013). A contribution to flora, life form and chorology of plants in Noor and Sisangan lowland forests. Journal of Taxonomy and Biosistematics, 4, 31-44.
36. Niromand, H., & And Bozornia, M., 2010. Introduction to time series. Ferdowsi University of Mashhad (In Persian).
37. Pan, N., Feng, X., Fu, B., Wang, S., Ji, F., & Pan, S. (2018). Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sensing of Environment, 214, 59-72. [DOI:10.1016/j.rse.2018.05.018]
38. Sagheb-Talebi K., Sajedi T., & Pourhashemi, M. (2014). Forests of Iran: A Treasure from the Past, a Hope for the Future, 10, 39-151. [DOI:10.1007/978-94-007-7371-4]
39. Shenani Houizeh, S.M., & Zarei, H. (2017). Investigation of land use changes during two decades of time period (case study: Abu al-Abbas watershed). Journal of Watershed Management Research, 7(14), 244-237. [DOI:10.29252/jwmr.7.14.244]
40. Siadati S., Moradi H., Attar F., Etemad V., Hamzeh'ee B.E.H.N.A.M. Naqinezhad A., (2010). Botanical diversity of Hyrcanian forests; a case study of a transect in the Kheyrud protected lowland mountain forests in northern Iran. Phytotaxa, 7, 1-18. [DOI:10.11646/phytotaxa.7.1.1]
41. Tajiki, M., Najafinejad, A., Gholipour, M., Siroosi, H., Sadodin, A., Sheikh, V.B., Zare Garizi, A., & Halisaz, A. (2022). Efficiency of Watershed Management Measures on Erosion and Sedimentation of Qarnaveh watershed, Golestan Province. Journal of Watershed Management Research, 13(26), 163-177. [DOI:10.52547/jwmr.13.26.163]
42. Tucker, C.J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127-150. [DOI:10.1016/0034-4257(79)90013-0]
43. Wang, D., & Alimohammadi, N. (2012). Responses of annual runoff, evaporation, and storage change to climate variability at the watershed scale. Water Resour. Res. 48(5), 5546. https://doi.org/10.1029/2011WR011444 [DOI:10.1029/2011WR011444.]
44. Wang, J., Xie, Y., Wang, X., Dong, J., & Bie, Q. (2019) Detecting Patterns of Vegetation Gradual Changes (2001-2017) in Shiyang River Basin, Based on a Novel Framework. Remote Sensing, 11, 2475. [DOI:10.3390/rs11212475]
45. Willis, K.S. (2015). Remote sensing change detection for ecological monitoring in United States protected areas. Biological Conservation, 182, 233-242. [DOI:10.1016/j.biocon.2014.12.006]
46. Wu, D., Wu, H., Zhao, X., Zhou, T., Tang, B., Zhao, W., & Jia, K. (2014). Evaluation of Spatiotemporal Variations of Global Fractional Vegetation Cover Based on GIMMS NDVI Data from 1982 to 2011. Remote Sensing, 6(5), 4217-4239. [DOI:10.3390/rs6054217]
47. Xiao, J., & Moody, A. (2005). Geographical distribution of global greening trends and their climatic correlates: 1982-1998. International Journal of Remote Sensing, 26(11), 2371-2390. [DOI:10.1080/01431160500033682]
48. Yang, J., Weisberg, P.J., & Bristow, N.A. (2012). Landsat remote sensing approaches for monitoring long-term tree cover dynamics in semi-arid woodlands: Comparison of vegetation indices and spectral mixture analysis. Remote Sensing of Environment 119, 62-71. [DOI:10.1016/j.rse.2011.12.004]
49. Zhou, L., Tian, Y., Myneni, R. B., Ciais, P., Saatchi, S., Liu, Y. Y., Piao, S., Chen, H., Vermote, E.F., Song, C., & Hwang, T. (2014). Widespread decline of Congo rainforest greenness in the past decade. Nature, 509(7498), 86-90.‌ [DOI:10.1038/nature13265]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb