1. Abbaspour, K. C. (2007). User manual for SWAT-CUP, SWAT calibration and uncertainty analysis programs. Swiss Federal Institute of Aquatic Science and Technology, Eawag, Duebendorf, Switzerland, 93.
2. Aithal, B. H., Raok, V., & Ramachandra, T. V. (2014). Modeling and geo-visuisation of urban growth. In Conference on conservation and sustainable management of wetland ecosystem in Western Ghats.
3. Alexander, L., Allen, S., & Bindoff, N. L. (2013). Working group I contribution to the IPCC fifth assessment report climate change 2013: The physical science basis summary for policymakers.
4. Apurv, T., Mehrotra, R., Sharma, A., Goyal, M. K., & Dutta, S. (2015). Impact of climate change on floods in the Brahmaputra basin using CMIP5 decadal predictions. Journal of Hydrology, 527, 281-291. [
DOI:10.1016/j.jhydrol.2015.04.056]
5. Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., ... & Jha, M. K. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491-1508. [
DOI:10.13031/2013.42256]
6. Asheri, E. (2016). Study on urban land use change impacts on rural settlement strategy using automated cell model (case study city of Urmia). Geographical Planning of Space, 5(18), 151-167.
7. Cao, C., Sun, R., Wu, Z., Chen, B., Yang, C., Li, Q., & Fraedrich, K. (2023). Streamflow Response to Climate and Land-Use Changes in a Tropical Island Basin. Sustainability, 15(18), 13941. [
DOI:10.3390/su151813941]
8. Chegnizadeh, A., Rabieifar, H., Ebrahimi, H., & Zakeri Nayeri, M. (2023). The Effect of Mid-term Changes in Climate and Land use on Flow Reduction in Karkheh Catchment. Journal of Water and Soil Resources Conservation, 12(2), 13-29.
9. Dannenberg, M. P., Wise, E. K., & Smith, W. K. (2019). Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Science advances, 5(10), eaaw0667. [
DOI:10.1126/sciadv.aaw0667]
10. El-Khoury, A., Seidou, O., Lapen, D., Que, Z., Mohammadian, M., Sunohara, M., & Bahram, D. (2015). Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin. Journal of environmental management, 151, 76-86. [
DOI:10.1016/j.jenvman.2014.12.012]
11. Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937-1958. [
DOI:10.5194/gmd-9-1937-2016]
12. Ivancic, T. J., & Shaw, S. B. (2017). Identifying spatial clustering in change points of streamflow across the contiguous US between 1945 and 2009. Geophysical Research Letters, 44(5), 2445-2453. [
DOI:10.1002/2016GL072444]
13. Jafari Gorzin, B., Kavian, A., & Solaimani, K. (2023). Investigation of Land use Changes and Its Role in the Hydrology of the Upstream Areas of Siahroud Watershed [Research]. Journal of watershed management research, 14(27), 26-37. [
DOI:10.61186/jwmr.14.27.26]
14. Jia, H. J., & Wan, R. R. (2012). Simulating the impacts of land use/cover change on storm-runoff for a mesoscale watershed in east China. Advanced Materials Research, 347, 3856-3862. [
DOI:10.4028/www.scientific.net/AMR.347-353.3856]
15. Kavian, A., Gholami, L., Mohammadi, M., Spalevic, V., & Soraki, M. F. (2018). Impact of wheat residue on soil erosion processes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2), 553-562. [
DOI:10.15835/nbha46211192]
16. Khan, A., Ghoraba, S., Arnold, J. G., & Di Luzio, M. (2014). Hydrological modeling of upper Indus Basin and assessment of deltaic ecology. Int. J. Mod. Eng. Res, 4(1), 73-85.
17. Kiyani Majd, M., Nohtani, M., Dehmardeh Ghaleh No, M. R., & Shikh, Z. (2023). Simulating the Runoff of Watersheds in Dry Areas on A Monthly Scale using the SWAT Model (Case Study: Lar Watershed) [Research]. Journal of watershed management research, 14(27), 135-145. [
DOI:10.61186/jwmr.14.27.135]
18. Leng, G., Tang, Q., & Rayburg, S. (2015). Climate change impacts on meteorological, agricultural and hydrological droughts in China. Global and Planetary Change, 126, 23-34. [
DOI:10.1016/j.gloplacha.2015.01.003]
19. Lennert, J., Farkas, J. Z., Kovács, A. D., Molnár, A., Módos, R., Baka, D., & Kovács, Z. (2020). Measuring and predicting long-term land cover changes in the functional urban area of Budapest. Sustainability, 12(8), 3331. [
DOI:10.3390/su12083331]
20. Liu, Y. B., De Smedt, F., Hoffmann, L., & Pfister, L. (2005). Assessing land use impacts on flood processes in complex terrain by using GIS and modeling approach. Environmental modeling & assessment, 9, 227-235. [
DOI:10.1007/s10666-005-0306-7]
21. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., ... & Zhou, B. (2021). Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2(1), 2391.
22. Meaurio, M., Zabaleta, A., Uriarte, J. A., Srinivasan, R., & Antigüedad, I. (2015). Evaluation of SWAT models performance to simulate streamflow spatial origin. The case of a small forested watershed. Journal of hydrology, 525, 326-334. [
DOI:10.1016/j.jhydrol.2015.03.050]
23. Meinshausen, M., Nicholls, Z. R., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., ... & Wang, R. H. (2020). The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 13(8), 3571-3605. [
DOI:10.5194/gmd-13-3571-2020]
24. Miller, J. D., & Hess, T. (2017). Urbanisation impacts on storm runoff along a rural-urban gradient. Journal of hydrology, 552, 474-489. [
DOI:10.1016/j.jhydrol.2017.06.025]
25. Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763-1785. [
DOI:10.13031/trans.58.10715]
26. Mujiono, M., Indra, T. L., Harmantyo, D., Rukmana, I. P., & Nadia, Z. (2017, July). Simulation of land use change and effect on potential deforestation using Markov Chain-Cellular Automata. In AIP Conference Proceedings, (Vol. 1862, No. 1). AIP Publishing. [
DOI:10.1063/1.4991281]
27. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I-A discussion of principles. Journal of hydrology, 10(3), 282-290. [
DOI:10.1016/0022-1694(70)90255-6]
28. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.
29. Nouri, J., Gharagozlou, A., Arjmandi, R., Faryadi, S., & Adl, M. (2014). Predicting urban land use changes using a CA-Markov model. Arabian Journal for Science and Engineering, 39, 5565-5573. [
DOI:10.1007/s13369-014-1119-2]
30. O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., Van Ruijven, B. J., Van Vuuren, D. P., Birkmann, J., & Kok, K. (2017). The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global environmental change, 42, 169-180. [
DOI:10.1016/j.gloenvcha.2015.01.004]
31. Olivera, F., & Maidment, D. (1999). Geographic Information Systems (GIS)‐based spatially distributed model for runoff routing. Water Resources Research, 35(4), 1155-1164. [
DOI:10.1029/1998WR900104]
32. Piani, C., Weedon, G., Best, M., Gomes, S., Viterbo, P., Hagemann, S., & Haerter, J. (2010). Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. Journal of hydrology, 395(3-4), 199-215. [
DOI:10.1016/j.jhydrol.2010.10.024]
33. Pignotti, G., Rathjens, H., Cibin, R., Chaubey, I., & Crawford, M. (2017). Comparative analysis of HRU and grid-based SWAT models. Water, 9(4), 272. [
DOI:10.3390/w9040272]
34. Reddy, C. S., Singh, S., Dadhwal, V., Jha, C., Rao, N. R., & Diwakar, P. (2017). Predictive modelling of the spatial pattern of past and future forest cover changes in India. Journal of Earth System Science, 126, 1-16. [
DOI:10.1007/s12040-016-0786-7]
35. Ringard, J., Seyler, F., & Linguet, L. (2017). A quantile mapping bias correction method based on hydroclimatic classification of the Guiana shield. Sensors, 17(6), 1413. [
DOI:10.3390/s17061413]
36. Samie, A., Deng, X., Jia, S., & Chen, D. (2017). Scenario-based simulation on dynamics of land-use-land-cover change in Punjab Province, Pakistan. Sustainability, 9(8), 1285. [
DOI:10.3390/su9081285]
37. Schilling, K. E., Gassman, P. W., Kling, C. L., Campbell, T., Jha, M. K., Wolter, C. F., & Arnold, J. G. (2014). The potential for agricultural land use change to reduce flood risk in a large watershed. Hydrological Processes, 28(8), 3314-3325. [
DOI:10.1002/hyp.9865]
38. Shang, X., Jiang, X., Jia, R., & Wei, C. (2019). Land use and climate change effects on surface runoff variations in the upper Heihe River basin. Water, 11(2), 344. [
DOI:10.3390/w11020344]
39. Solomon, S. (2007). Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge university press.
40. Surabuddin Mondal, M., Sharma, N., Kappas, M., & Garg, P. K. (2019). Ca Markov modeling of land use land cover dynamics and sensitivity analysis to identify sensitive parameter (S). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 723-729. [
DOI:10.5194/isprs-archives-XLII-2-W13-723-2019]
41. Tan, M. L., Ibrahim, A. L., Yusop, Z., Duan, Z., & Ling, L. (2015). Impacts of land-use and climate variability on hydrological components in the Johor River basin, Malaysia. Hydrological Sciences Journal, 60(5), 873-889. [
DOI:10.1080/02626667.2014.967246]
42. Wu, J., Miao, C., Zhang, X., Yang, T., & Duan, Q. (2017). Detecting the quantitative hydrological response to changes in climate and human activities. Science of the Total Environment, 586, 328-337. [
DOI:10.1016/j.scitotenv.2017.02.010]
43. Xu, S., Qin, M., Ding, S., Zhao, Q., Liu, H., Li, C., Yang, X., Li, Y., Yang, J., & Ji, X. (2019). The impacts of climate variation and land use changes on streamflow in the Yihe River, China. Water, 11(5), 887. [
DOI:10.3390/w11050887]
44. Zabihi, M., Moradi, H. R., Gholamalifard, M., & Khaledi Darvishan, A. (2019). Effects of Land Use/Land Cover Change Scenarios on Landscape Metrics on the Talar Watershed. Watershed Management Research Journal, 32(1), 84-99. [
DOI:10.22092/wmej.2018.123624.1156]
45. Zhang, L., Karthikeyan, R., Bai, Z., & Srinivasan, R. (2017). Analysis of streamflow responses to climate variability and land use change in the Loess Plateau region of China. Catena, 154, 1-11. [
DOI:10.1016/j.catena.2017.02.012]