1. Abril, J., & Knight, D. (2004). Stage-discharge prediction for rivers in flood applying a depth-averaged model. Journal of Hydraulic Research, 42(6), 616-629.
https://doi.org/10.1080/00221686.2004.9628315 [
DOI:10.1080/00221686.2004. 9628315]
2. Afsarian, F., Saber, A., Pourzangbar, A., Olabi, A. G., & Khanmohammadi, M. A. (2018). Analysis of recycled aggregates effect on energy conservation using M5′ model tree algorithm. Energy, 156, 264-277. https://doi.org/ 10.1016/j.energy.2018.05.099 [
DOI:10.1016/j.energy.2018.05.099]
3. Al Sawaf, M. B., & Kawanisi, K. (2020). Assessment of mountain river streamflow patterns and flood events using information and complexity measures. Journal of Hydrology, 590, 125508. [
DOI:10.1016/j.jhydrol.2020.125508]
4. Ardiclioglu, M., Genc, O., Kalin, L., & Agiralioglu, N. (2012). Investigation of flow properties in natural streams using the entropy concept. Water and Environment Journal, 26(2), 147-154. https://doi.org/ 10.1111/j.1747-6593.2011.00270.x [
DOI:10.1111/j.1747-6593.2011.00270.x]
5. Bashirgonbad, M. (2022). Rainfall-runoff modeling to predict maximum daily flow under climate change conditions. Journal of watershed management research, 13(26), 115-124. [
DOI:10.52547/jwmr.13.26.115]
6. Bjerklie, D. M., Dingman, S. L., Vorosmarty, C. J., Bolster, C. H., & Congalton, R. G. (2003). Evaluating the potential for measuring river discharge from space. Journal of Hydrology, 278(1-4), 17-38. [
DOI:10.1016/S0022-1694(03)00129-X]
7. Braca, G., 2008. Stage-discharge relationships in open channels: Practices and problems. London, UK: Univ. degli Studi di Trento, Dipartimento di Ingegneria Civile e Ambientale: 1- 6.
8. Choo, T., Maeng, S., Yoon, H., Kim, D., & Kim, S. (2012). A study on the derivation of a mean velocity formula from Chiu's velocity formula and bottom shear stress. International Journal of Environmental Research, 6(2), 537-546.
https://doi.org/10.5194/hessd-8-6419-2011 [
DOI:10.22059/ijer.2012.523]
9. Cook, A., & Merwade, V. (2009). Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping. Journal of Hydrology, 377(1-2), 131-142. https:// doi.org 10.1016/j.jhydrol.2009.08.015 [
DOI:10.1016/j.jhydrol.2009.08.015]
10. Corato, G., Ammari, A., & Moramarco, T. (2014). Conventional point-velocity records and surface velocity observations for estimating high flow discharge. Entropy, 16(10), 5546-5559. [
DOI:10.3390/e16105546]
11. Demir, V., & Kisi, O. (2016). Flood hazard mapping by using geographic information system and hydraulic model: Mert River, Samsun, Turkey. Advances in Meteorology, 2016. https://doi.org/ 10.1155/ 2016/4891015.
https://doi.org/10.1155/2016/4891015 [
DOI:10.1155/ 2016/4891015.]
12. Deo, R. C., Downs, N., Parisi, A. V., Adamowski, J. F., & Quilty, J. M. (2017). Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle. Environmental research, 155, 141-166. https://doi.org/ 10.1016/j.envres.2017.01.035 [
DOI:10.1016/j.envres.2017.01.035]
13. EL Bilali, A., Taleb, A., EL Idrissi, B., Brouziyne, Y., & Mazigh, N. (2020). Comparison of a data-based model and a soil erosion model coupled with multiple linear regression for the prediction of reservoir sedimentation in a semi-arid environment. Euro-Mediterranean Journal for Environmental Integration, 5, 1-13. https://doi.org/ 10.1007/s41207-020-00205-8 [
DOI:10.1007/s41207-020-00205-8]
14. Eslami, S., & Hasanlou, M. (2019). Coral Reef modeling using Support Vector Regression and applying spectral indices. Iranian journal of Marine technology, 6(1), 31-44. https://doi.org/ 20.1001.1.24236853.1398.6.1.3.3 [
DOI:20.1001.1.24236853.1398.6.1.3.3]
15. García Nieto, P. J., García-Gonzalo, E., Bernardo Sánchez, A., & Rodríguez Miranda, A. (2018). Air quality modeling using the PSO-SVM-based approach, MLP neural network, and M5 model tree in the metropolitan area of Oviedo (Northern Spain). Environmental Modeling & Assessment, 23, 229-247.
https://doi.org/10.1007/s10666-017-9578-y [
DOI:10.1007/S10666-017-9578-Y.]
16. Goel, N., Then, H. H., & Arya, D. (2005). Flood hazard mapping in the lower part of Chindwin River Basin, Myanmar. In International conference on innovation advances and implementation of flood forecasting technology, 10:17-19.
17. Hasanpour Kashani, M., Daneshfaraz, R., Ghorbani, M., Najafi, M., & Kisi, O. (2015). Comparison of different methods for developing a stage-discharge curve of the Kizilirmak River. Journal of Flood Risk Management, 8(1), 71-86. [
DOI:10.1111/jfr3.12064]
18. Hu, C., Ji, Z., & Guo, Q. (2010). Flow movement and sediment transport in compound channels. Journal of Hydraulic Research, 48(1), 23-32. [
DOI:10.1080/00221680903568600]
19. Huai, W., Zeng, Y., Xu, Z., & Yang, Z. (2009). Three-layer model for vertical velocity distribution in open channel flow with submerged rigid vegetation. Advances in Water Resources, 32(4), 487-492.
https://doi.org/10.1016/j.advwatres.2008.11.014 [
DOI:10.1016/j.advwatres.2008.11.014.]
20. Kisi, O., Heddam, S., Keshtegar, B., Piri, J., & Adnan, R. M. (2022). Predicting daily streamflow in a cold climate using a novel data mining technique: radial M5 model tree. Water, 14(9), 1449.
https://doi.org/10.3390/w14091449 [
DOI:10.3390/w14091449.]
21. Lee, T. H., & Georgakakos, K. P. (1996). Operational Rainfall Prediction on Meso‐γ Scales for Hydrologic Applications. Water Resources Research, 32(4), 987-1003.
https://doi.org/10.1029/95WR03814 [
DOI:10.1029/95WR03814.]
22. Lin, J. Y., Cheng, C. T., & Chau, K. W. (2006). Using support vector machines for long-term discharge prediction. Hydrological Sciences Journal, 51(4), 599-612. [
DOI:10.1623/hysj.51.4.599]
23. Lohani, A. K., Goel, N. K., & Bhatia, K. (2014). Improving real time flood forecasting using fuzzy inference system. Journal of Hydrology, 509, 25-41. [
DOI:10.1016/j.jhydrol.2013.11.021]
24. Maity, R., Bhagwat, P. P., & Bhatnagar, A. (2010). Potential of support vector regression for prediction of monthly streamflow using endogenous property. Hydrological Processes: An International Journal, 24(7), 917-923. https://doi.org/ 10.1002/hyp.7535.
https://doi.org/10.1002/hyp.7535 [
DOI:10.1002/hyp.7535.]
25. Moramarco, T., & Singh, V. (2008). Streamflow measurements and discharge assessment during high flood events. Hydrology and Hydraulics, VP Singh, ed, 899. [
DOI:10.1186/s40562-018-0113-z]
26. Mosavi, A., Bathla, Y., & Varkonyi-Koczy, A. (2018). Predicting the future using web knowledge: state of the art survey. In International conference on global research and education: 341-349. https://doi.org/ 10.1007/978-3-319-67459-9_42.
https://doi.org/10.1007/978-3-319-67459-9_42 [
DOI:10.1007/978-3-319-67459-9_42.]
27. Pham, H. T., Marshall, L., Johnson, F., & Sharma, A. (2018). Deriving daily water levels from satellite altimetry and land surface temperature for sparsely gauged catchments: A case study for the Mekong River. Remote Sensing of Environment, 212, 31-46. [
DOI:10.1016/j.rse.2018.04.034]
28. Piri, J., Shamshirband, S., Petković, D., Tong, C. W., & ur Rehman, M. H. (2015). Prediction of the solar radiation on the earth using support vector regression technique. Infrared Physics & Technology, 68, 179-185. [
DOI:10.1016/j.infrared.2014.12.006]
29. Quinlan, J. R. (1992). Learning with continuous classes. In 5th Australian joint conference on artificial intelligence, 92: 343-348.
30. Rokoni, A., Zhang, L., Soori, T., Hu, H., Wu, T., & Sun, Y. (2022). Learning new physical descriptors from reduced-order analysis of bubble dynamics in boiling heat transfer. International Journal of Heat and Mass Transfer, 186, 122501.
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122501 [
DOI:10.1016/j.ijheatmasstransfer.2021.122501.]
31. Sahu, M., Khatua, K., & Mahapatra, S. (2011). A neural network approach for prediction of discharge in straight compound open channel flow. Flow Measurement and Instrumentation, 22(5), 438-446. [
DOI:10.1016/j.flowmeasinst.2011.06.009]
32. Sanz-Ramos, M., Bladé, E., González-Escalona, F., Olivares, G., & Aragón-Hernández, J. L. (2021). Interpreting the manning roughness coefficient in overland flow simulations with coupled hydrological-hydraulic distributed models. Water, 13(23), 3433. [
DOI:10.3390/w13233433]
33. shiukhy, S., & Mousavi, M. (2019). The Effect of Large-Scale Climatic Signals on Rainfall in Mazandaran Province. Journal of watershed management research, 10(20), 13-24. https://doi.org/ 10.29252/ jwmr.10.20.13.
https://doi.org/10.29252/jwmr.10.20.13 [
DOI:10.29252/ jwmr.10.20.13.]
34. Srinivasan, D. (2008). Energy demand prediction using GMDH networks. Neurocomputing, 72(1-3), 625-629. [
DOI:10.1016/j.neucom.2008.08.006]
35. Tarpanelli, A., Barbetta, S., Brocca, L., & Moramarco, T. (2013). River discharge estimation by using altimetry data and simplified flood routing modeling. Remote Sensing, 5(9), 4145-4162. [
DOI:10.3390/rs5094145]
36. Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79-82. [
DOI:10.3354/cr030079]
37. Yassin, M., Asfaw, A., Speight, V., & Shucksmith, J. D. (2021). Evaluation of Data-Driven and Process-Based Real-Time Flow Forecasting Techniques for Informing Operation of Surface Water Abstraction. Journal of Water Resources Planning and Management, 147(7), 04021037. https://doi.org/ 10.1061/(ASCE)WR.1943-5452.0001397 [
DOI:10.1061/(ASCE)WR.1943-5452.0001397]
38. Zahiri, A., Dehghani, A., & Hezarjaribi, A. (2012). Determination of stage discharge curve for laboratory and river compound channels applying genetic algorithm. Journal of Water and Soil Conservation, 19(2), 179-192.