1. Abushandi, E., & Merkel, B. (2013). Modeling rainfall runoff relations using HEC-HMS and IHACRES for a single rain event in an arid region of Jordan. Journal of Water Resource Management, 27, 2391-2409. [
DOI:10.1007/s11269-013-0293-4]
2. Aghabeigi, N., Esmali Ouri, A., Mostafa zadeh, R., & Golshan, M. (2019). The effects of climate change on runoff using IHACRES hydrologic model in some of watersheds, Ardabil province. Irrigation & Water Engineering, 10 (38), 176-187 (In Persian). 10.22125/IWE.2019.100750
3. Ahmadi, M., Dadashi Roudbari, A., & Deyrmajai, A. (2020). Runoff estimation using IHACRES model based on CHIRPS satellite data and CMIP5 models (case study: Gorganroud basin-Aq Qala area). Iranian Journal of Soil and Water Research, 51 (3), 659-671 (In Persian). 10.22059/IJSWR.2019.289144.668316
4. Ahmadi, M., Motamedvaziri, B., Ahmadi, H., Moeini, A., & Zehtabiyan, GH. (2019). Assessment of climate change impact on surface runoff, statistical downscaling and hydrological modelling. Physics and Chemistry of the Earth, Parts A/B/C, 114,102800. [
DOI:10.1016/j.pce.2019.09.002]
5. Ahmadpour, A., Mirhashemi, H., & Haghighat jou, P. (2020). Evaluation of classical, conceptual IHACRES and hybrid ARMA-ANN models in simulation and prediction of daily discharge of Maroun river. Iranian Journal of Soil and Water Research, 51 (3), 727-736 (In Persian). DOI: 10.22059/ijswr.2019.290549.668344
6. Alami, M.T., Aghabalaee, B., Ahmadi, M. H., & Farzin, S. (2014). Optimum allocation of water resources by using system dynamics.Water Engineering, 7 (23), 99-110 (In Persian).
7. Amiri, E., & Rodbari Mousavi, M. (2016). Evaluation of IHACRES hydrological model for simulation of daily flow (case study: Polrood and Shalmanrood rivers). Iranian Journal of Ecohydrology, 3(4), 533-543 (In Persian). 10.22059/IJE.2016.60356
8. Babolhakami, A., Gholami Sefidkouhi, M., & Emadi, A. (2020). Assessing the impact of climate change on drought and forecasting Neka river basin runoff in future periods. Iranian Journal of Ecohydrology, 7 (2), 291-302 (In Persian).
9. Croke, B.F., & Jakeman, A.J. (2008). Use of the IHACRES rainfall-runoff model in arid and semiarid regions. Hydrological modelling in arid and semi-arid areas, 41-48. [
DOI:10.1017/CBO9780511535734.005]
10. Dakhlaoui, H., Ruelland, D., Tramblay, Y., & Bargaoui, Z. (2017). Evaluating the robustness of conceptual rainfall-runoff models under climate variability in northern Tunisia. Journal of Hydrology, 550, 201-217. [
DOI:10.1016/j.jhydrol.2017.04.032]
11. IPCC. (2013). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovern-mental panel on climate change intergovernmental panel on climate change (IPCC). Cam-bridge, United Kingdom and New York, USA.
12. Jakeman, A. J., & Hornberger, G.M. (1993). How much complexity is warranted in a rainfall runoff model? Water Resources Research, 29(8), 2637-2649. [
DOI:10.1029/93WR00877]
13. Keyhanpanah, M., Zare Bidaki, R., & Bazrafshan, J. (2017). Flow modelling in Great Karun Sub-basins in terms of future climate. Iranian Journal of Ecohydrology, 4 (4), 1033- 1047 (In Persian). 10.22059/IJE.2017.229255.502
14. Koutroulis, A. G., Tsanis, I. K., Daliakopoulos, I. N., & Jacob, D. (2013). Impact of climate change on water resources status: A case study for Crete Island, Greece. Journal of hydrology, 479, 146-158. [
DOI:10.1016/j.jhydrol.2012.11.055]
15. Kumar Paul, P., Zhang, Y., Ma, M., Mishra, A., Panigrahy, N., & Singh, R. (2021). Selecting hydrological models for developing countries: perspective of global, continental, and country scale models over catchment scale models. Journal of Hydrology, 600, 126561. [
DOI:10.1016/j.jhydrol.2021.126561]
16. Ma, C., Sun, L., Liu, S., Shao, M., & Luo, Y. (2015). Impact of climate change on the streamflow in the glacierized chu river basin, central asia. Journal of Arid Land, 7(4), 501-513. [
DOI:10.1007/s40333-015-0041-0]
17. Meteorological Organization of Mazandaran Province.
18. Mirdashtovan, M., Malekian, A., & Mohseni Saravi, M. (2018). Stream flow simulation using statistical downscaling of climatic data: Urmia Lake basin. Iranian Journal of Ecohydrology, 5 (2): 419-431 (In Persian). 10.22059/IJE.2017.232662.586
19. Moghadam, H., Ashofteh, P., & Loaiciga, H.A. (2023). Investigating the performance of data mining, lumped, and distributed models in runoff projected under climate change. Journal of Hydrology, 617, 128992. [
DOI:10.1016/j.jhydrol.2022.128992]
20. Qesmi, R., Mirabbasi Najafabadi, R., & Nasr Esfahani, M. (2020). Simulation of Shirin (Azam Jareh) river runoff in climate change conditions using IHACRES model. Iranian Water Research Journal, 14 (4), 87-98 (In Persian).
21. Shahiri Tabarestani, E., & Zokaei, M. S. (2020). Assessment of Flood Hazard using Analytic Hierarchy Process Method (AHP) in Mazandaran Province, Iran. Environment and Water Engineering, 6(4), 331-344. [
DOI:10.22034/jewe.2020.235593.1370]
22. Yang, T.H., Ho, J.Y., Hwang, G.D., & Lin, G.F. (2014). An indirect approach for discharge estimation: a combination among micro-genetic algorithm, hydraulic model, and in situ measurement. Flow Measurement and Instrumentation, 39, 46-53. [
DOI:10.1016/j.flowmeasinst.2014.07.003]
23. Yang, W., Chen, H., Xu, C-Y., Huo, R., Chen, J., & Guo, S. (2020). Temporal and spatial transferabilities of hydrological models under different climates and underlying surface conditions. Journal of Hydrology, 591, 125276. [
DOI:10.1016/j.jhydrol.2020.125276]
24. Yang, W., R. Xia, H. Chen, M. Wang & C-Y. Xu. (2022). The impact of calibration conditions on the transferability of conceptual hydrological models under stationary and nonstationary climatic conditions. Journal of Hydrology, 613, 128310. [
DOI:10.1016/j.jhydrol.2022.128310]
25. Zhu, R., Croke, B., & Jakeman, A. (2020). Diffuse groundwater recharge estimation confronting hydrological modelling uncertainty. Journal of Hydrology, 584, 124642. [
DOI:10.1016/j.jhydrol.2020.124642]