1. Abrahart, R.J., See, L.M. (2000). Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecast in two contrasting catchments. Hydrological Process, 14: 2157-2172.
https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<2157::AID-HYP57>3.0.CO;2-S [
DOI:10.1002/1099-1085(20000815/30)14:11/123.0.CO;2-S]
2. Adamowski, J. (2013). Using support vector regression to predict direct runoff, base flow and total flow in a mountainous watershed with limited data in Uttaranchal, India. Versita, 45, 71-83. [
DOI:10.2478/sggw-2013-0007]
3. Anctil, F., Rat, A. (2005). Evaluation of neural networks streamflow forecasting on 47 watersheds. J. Hydrol. Eng., ASCE 10 (1): 85-88. http://dx.doi.org/10.1061/(ASCE)1084-0699(2005)10:1(85). [
DOI:10.1061/(ASCE)1084-0699(2005)10:1(85)]
4. ASCE Task Committee. (2000). Artificial neural networks in hydrology, II: Hydrology application. Journal of Hydrologic Engineering, 5: 124-137. [
DOI:10.1061/(ASCE)1084-0699(2000)5:2(124)]
5. Braddock, R. D., Kremmer, M.L., Sanzogni, L. (1998). Feedforward artificial neural network model for forecasting rainfall-runoff. Environmental Sciences, 9: 419-432.
https://doi.org/10.1002/(SICI)1099-095X(199807/08)9:4<419::AID-ENV312>3.3.CO;2-4 [
DOI:10.1002/(SICI)1099-095X(199807/08)9:43.3.CO;2-4]
6. Buendia, C., Batalla, R.J., Sabater, S., Palau, A., Marcé, R. (2016). Runoff trends driven by climate and afforestation in a Pyrenean Basin. Land Degrad, Dev. 27(3), 823-838.
https://doi.org/10.1002/ldr.2384 [
DOI:10.1002/ldr.2384.]
7. Garosi, Y., Sheklabadi, M., Conoscenti, C., Pourghasemi, H.R., Van Oost, K. (2019). Assessing the performance of GIS-based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Sci. Total Environ, 664, 1117-1132.
https://doi.org/10.1016/j.scitotenv.2019.02.093 [
DOI:10.1016/j.scitotenv.2019.02.093.]
8. Gao, J., Bai, Y., Cui, H., Zhang, Y. (2020). The effect of different crops and slopes on runoff and soil erosion. Water Pract. Technol, 15 (3), 773-780.
https://doi.org/10.2166/wpt.2020.061 [
DOI:10.2166/wpt.2020.061.]
9. Ghahramani, F., Ishikawa, Y., Gomi, T. (2011). Slope length effect on sediment and organic litter transport on a steep forested hillslope: upscaling from plot to hillslope scale. Hydrol. Rese. Lett, 5, 16-20. doi:10.3178/hrl.5.16. [
DOI:10.3178/hrl.5.16]
10. Gholami, V., Booij, M.J., Tehrani, E.N., Hadian, M.A. (2018). Spatial soil erosion estimation using an artificial neural network (ANN) and field plot data. Catena, 163, 210-218. [
DOI:10.1016/j.catena.2017.12.027]
11. Gholami, V., Khaleghi, M.R. (2020). A simulation of the rainfall-runoff process using artificial neural network and HEC-HMS model in forest lands. Journal of Forest Science, 67: 165-174.
https://doi.org/10.17221/90/2020-JFS [
DOI:10.17221/90/2020-JFS.]
12. Harris, M.T., Boardman, J. (1990). A rule-based Expert System Approach to Predicting Waterborne Soil Erosion. p. 401-412. In J. Boardman, D.L. Foster and J.A. Dearing (Editors). Soil Erosion on Agricultural Land, John Wiley & Sons Ltd.
13. Heidari Chenari F., Fazloula, R., Nikzad Tehrani, E. (2022). Calibration and Evaluation of HEC-HMS Hydrological Model Parameters in Simulation of Single Rainfall-Runoff Events (Case Study: Tajan Watershed). jwmr, 13(26), 69-81. doi:10.52547/jwmr.13.26.69. [
DOI:10.52547/jwmr.13.26.69]
14. Hsu, K.L., Gupta, H.V., Sorooshian, S. (1995). Artificial neural network modeling of the rainfall-runoff process. Water Resources Research, 31(10): 2517-2530. [
DOI:10.1029/95WR01955]
15. Hu, T., Wu, F., Zhang, X. (2007). Rainfall-runoff modeling using principal component analysis and neural network. Nordic Hydrology, 38(3): 235-248. [
DOI:10.2166/nh.2007.010]
16. Isik, S., Kalin, L., Schoonover, J., Srivastava, P., Lockaby, B.G. (2013). Modeling effects of changing land use/cover on daily streamflow: an artificial neural network and curve number based hybrid approach. J. Hydrol., 485, 103-112. [
DOI:10.1016/j.jhydrol.2012.08.032]
17. Kashani, M.H., Ghorbani, M.A., Shahabi, M., Naganna, S.R., Diop, L. (2020). Multiple AI model integration strategy-application to saturated hydraulic conductivity prediction from easily available soil properties. Soil Tillage Res., 196, 104449
https://doi.org/10.1016/j.still.2019.104449 [
DOI:10.1016/j.still.2019.104449.]
18. Khan, S.M., Coulibaly P., and Dibike, Y. (2006). Uncertainty analysis of statistical downscaling methods. J. hydrol., 319: 357- 382. [
DOI:10.1016/j.jhydrol.2005.06.035]
19. Kisi, O. (2008). River flow forecasting and estimation using different artificial neural network technique. Hydrology Resource, 39(1): 27-40. [
DOI:10.2166/nh.2008.026]
20. Laufer, D., Loiblb, B., Märländer, B., Koch, H.J. (2016). Soil erosion and surface runoff under strip tillage for sugar beet (Beta vulgaris L.) in Central Europe. Soil Tillage Res., 162, 1-7.
https://doi.org/10.1016/j.still.2016.04.007 [
DOI:10.1016/j.still.2016.04.007.]
21. Liu, H.Q., Yang, J.H., Liu, C.X., Diao, Y.F., Ma, D.P., Li, F.H., Rahma, A.E., Lei, T.W. (2020). Flow velocity on cultivated soil slope with wheat straw incorporation. J. hydrol., 584, 124667.
https://doi.org/10.1016/j.jhydrol.2020.124667 [
DOI:10.1016/j.jhydrol.2020.124667.]
22. Lippman, R.P. (1987). An Introduction to computing with Neural Networks. IEEE ASSP Magazine, 4-22. [
DOI:10.1109/MASSP.1987.1165576]
23. Loh, W., Tim, L. (2000). A comparison of prediction accuracy, complexity, and training time of thirty three old and new classification algorithm. Mach. Learn, 40 (3): 203-238.
24. Luo, J., Zheng, Z., Li, T., He, S. (2020). Temporal variations in runoff and sediment yield associated with soil surface roughness under different rainfall patterns. Geomorphology, 349.
https://doi.org/10.1016/j.geomorph.2019.106915 [
DOI:10.1016/j.geomorph.2019.106915 p.106915.]
25. Minns, A.W., Hall. M.J. (1996). Artificial neural network as rainfall-runoff model. Hydrological Science Journal, 41(3): 399-417. [
DOI:10.1080/02626669609491511]
26. Muñoz-Robles, C. (2010). Runoff and erosion in woody encroachment, pasture and woodland vegetation in semi-arid New South Wales, Australia. PhD thesis, School of Environmental and Rural Science, University of New England. Armidale, NSW, 208 pp.
27. Nawar, S., Mouazen, A.M. (2019). On-line vis-NIR spectroscopy prediction of soil organic carbon using machine learning. Soil Tillage Res., 190, 120-127. https://doi.org/ 10.1016/j.still.2019.03.006.
https://doi.org/10.1016/j.still.2019.03.006 [
DOI:10.1016/j.still.2019.03.006.]
28. Prasad, R., Deo, R.C., Li, Y., Maraseni, T. (2018). Ensemble committee-based data intelligent approach for generating soil moisture forecasts with multivariate hydro-meteorological predictors. Soil Tillage Res., 181, 63-81.
https://doi.org/10.1016/j.still.2018.03.021 [
DOI:10.1016/j. still.2018.03.021.]
29. Rafiei Sardoii, E., Rostami, N., Khalighi Sigaroudi, S., Taheri, S. (2012). Calibration of loss estimation methods in HEC-HMS for simulation of surface runoff (Case Study: Amirkabir Dam Watershed, Iran). Adv. Environ. Biol., 6(1), 343-348.
30. Sahour, H., Gholami, V., Vazifedan, M. (2020). A comparative analysis of statistical and machine learning techniques for mapping the spatial distribution of groundwater salinity in a coastal aquifer. J. Hydrol., 591 p.125321. [
DOI:10.1016/j.jhydrol.2020.125321]
31. Wang, W.C., Chau, K.W., Cheng, C.T. Qui, L. (2009). A comparison of performance of several Artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology, 374: 294-306. [
DOI:10.1016/j.jhydrol.2009.06.019]
32. Wolka, K., Mulder, J., Biazin, B. (2018). Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review. Agric. Water Manage, 207, 67-79.
https://doi.org/10.1016/j.agwat.2018.05.016 [
DOI:10.1016/j.agwat.2018.05.016.]
33. Zhao, Y., Meng, X., Qi, T., Qing, F., Xiong, M., Li, Y., Guo, P. Chen, G., (2020). AI-based identification of low-frequency debris flow catchments in the Bailong River basin, China. Geomorphology,
https://doi.org/10.1016/j.geomorph.2020.107125 [
DOI:10.1016/j.geomorph.2020.107125 p.107125.]