1. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 56(97), e156.
2. Almazroui, M., Saeed, F., Saeed, S., Nazrul Islam, M., Ismail, M., Klutse, N. A. B., & Siddiqui, M. H. (2020). Projected change in temperature and precipitation over Africa from CMIP6. Earth Systems and Environment, 4, 455-475. [
DOI:10.1007/s41748-020-00161-x]
3. Azizzadeh, M., & Javan, K. (2015). Analyzing trends in reference evapotranspiration in northwest part of Iran. Journal of Ecological Engineering, 16(2), 1-12. [
DOI:10.12911/22998993/1853]
4. Chen, C., Kalra, A., & Ahmad, S. (2019). Hydrologic responses to climate change using downscaled GCM data on a watershed scale. Journal of Water and Climate Change, 10(1), 63-77. [
DOI:10.2166/wcc.2018.147]
5. Dehghani, T., Seseh, M., & Alijani, B. (2017).The effect of climate change on the distribution of specific humidity in the northern coasts of the Persian Gulf. Natural Geography, 11(39), 33-46.
6. Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937-1958. [
DOI:10.5194/gmd-9-1937-2016]
7. Ghafouri-Azar, M., & Lee, S. I. (2023). Meteorological Influences on reference evapotranspiration in different geographical Regions. Water, 15(3), 454. [
DOI:10.3390/w15030454]
8. IPCC,(2014). Summary for policymakers.In: Climate Change: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 1-32.
9. IPCC. (2021). Summary for policymakers. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, et al. (Eds.), Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press. 3-32.
10. Issaka, A. I., Paek, J., Abdella, K., Pollanen, M., Huda, A. K. S., Kaitibie, S., Goktepe, I., Haq, M. M., & Moustafa, A. T. (2017). Analysis and calibration of empirical relationships for estimating evapotranspiration in Qatar: Case study. Journal of Irrigation and Drainage Engineering, 143(2), 05016013. [
DOI:10.1061/(ASCE)IR.1943-4774.0001106]
11. Jahangir, Mohammad Hossein and Piran, Morteza. (2022). Exponential scaling of climate parameters under CanESM2 model based on different scenarios (case study of Qazvin station), 4th Iranian National Hydrology Conference, Shahrekord,
12. Jerin, J. N., Islam, A. R. M., Al Mamun, M., Mozahid, M., & Ibrahim, S. M. (2021). Climate change effects on potential evapotranspiration in Bangladesh. Arabian Journal of Geosciences, 14(8), 1-15. [
DOI:10.1007/s12517-021-07010-9]
13. Jokar Sarhangi, E., & Dehghan Chachkami, M. (2022). Efficiency Evaluation of RUSLE and ICONA models in erosion zoning of Baladeh watershed, Mazandaran province. Journal of Natural Environmental Hazards, 11(34), 159-178.
14. Karimi, S. R., nasrolahi, A., & iranshahi, M. (2023). Investigating the effects of climate change on reference evaporation and transpiration based on the scenarios of the sixth climate change report (case study: Khorramabad station). Iranian Journal of Soil and Water Research, 54(11), 1759-1777.
15. Kheyri, R., Mojarrad, F., Farhadi, B., & Masompour Samakoosh, J. (2022). Investigation of Evapotranspiration Changes of Autumn Irrigated Wheat in Iran under Climate Change Conditions. Journal of Geography and Regional Development, 20(1), 248-215.
16. Kim, J. H., Sung, J. H., Chung, E. S., Kim, S. U., Son, M., & Shiru, M. S. (2021). Comparison of Projection in Meteorological and Hydrological Droughts in the Cheongmicheon Watershed for RCP4. 5 and SSP2-4.5. Sustainability, 13(4), 2066. [
DOI:10.3390/su13042066]
17. Lang, D., Zheng, J., Shi, J., Liao, F., Ma, X., Wang, W., Chen, X., & Zhang, M. (2017). A comparative study of potential evapotranspiration estimation by eight methods with FAO Penman-Monteith method in southwestern China. Water, 9(10), 734. [
DOI:10.3390/w9100734]
18. Liu, Z., Lu, J., Huang, J., Chen, X., & Zhang, L. (2021). Projection of reference crop evapotranspiration under future climate change in Poyang Lake watershed, China. Journal of Hydrologic Engineering, 26(1), 05020042. [
DOI:10.1061/(ASCE)HE.1943-5584.0002020]
19. Makkink, G. F. (1957). Testing the Penman formula by means of lysimeters. Journal of the Institution of Water Engineerrs, 11, 277-288.
20. Mendez, M., Maathuis, B., Hein-Griggs, D., & Alvarado-Gamboa, L. F. (2020). Performance evaluation of bias correction methods for climate change monthly precipitation projections over Costa Rica. Water, 12(2), 482. [
DOI:10.3390/w12020482]
21. Modaresi, F., & Araghi, A. (2023). Projecting future reference evapotranspiration in Iran based on CMIP6 multi-model ensemble. Theoretical and Applied Climatology, 153(1), 101-112. [
DOI:10.1007/s00704-023-04465-6]
22. Niggli, U., Fließbach, A., Hepperly, P., & Scialabba, N. (2009). Low greenhouse gas agriculture: mitigation and adaptation potential of sustainable farming systems. Ökologie & Landbau, 141, 32-33.
23. O'Neill, B C., Kriegler, E., Ebi, K L., Kemp-Benedict, E., Riahi, K., Rothman, D S. & Solecki, W .(2017). The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42, 169-180. [
DOI:10.1016/j.gloenvcha.2015.01.004]
24. Roshani, A., & Hamidi, M. (2022). Forecasting the effects of climate change scenarios on temperature & precipitation based on CMIP6 models (Case study: Sari station). Water and Irrigation Management, 11(4), 781-795. [
DOI:10.22059/jwim.2022.330603.920]
25. Heydari Tasheh Kaboud, S., & Khoshkhoo, Y. (2019). Projection and prediction of the annual and seasonal future reference evapotranspiration time scales in the West of Iran under RCP emission scenarios. Applied researches in Geographical Sciences, 19(53), 157-176. [
DOI:10.29252/jgs.19.53.157]
26. Shenbin, C., Yunfeng, L., & Thomas, A. (2006). Climatic change on the Tibetan Plateau: potential evapotranspiration trends from 1961-2000. Climatic change, 76(3-4), 291-319. [
DOI:10.1007/s10584-006-9080-z]
27. Sutapa, I. W., & Wicana, S. (2020). Sensitivity of methods for estimating potential evapotranspiration to climate change. In IOP Conference Series: Earth and Environmental Scienc, 437(1), 012039. [
DOI:10.1088/1755-1315/437/1/012039]
28. Turc, L. (1961). Evaluation des besoins en eau d'irrigation, évapotranspiration potentielle. Ann. Agron. 12, 13-49.
29. Yahyavi Dizaj, A., Akbari Azirani, T., Khaledi, S., & Javan, K. (2023). Seasonal Analysis of Reference Evapotranspiration and Its Sensitivity to Meteorological Elements in IRAN. Water and Soil, 37(4), 643-657.
30. Yahyavi Dizaj, A., Javan, K., Khaledi, S., & Akbari Azirani, T. (2023). Evaluation of Changes in Reference Evapotranspiration in Iran Over the Last Decades. Desert Management, 11(1), 39-58.
31. Zarrin, A., Yazdany, D., & Dadashi-Roudbari, A. A. (2022). Projection of minimum and maximum temperatures in cold regions of Iran using SDSM statistical downscaling model. Climate Change Research, 3(10), 19-32.
32. Zhang, H., Hu, Y., Cai, J., Li, X., Tian, B., Zhang, Q., & An, W. (2020). Calculation of evapotranspiration in different climatic zones combining the long-term monitoring data with bootstrap method. Environmental Research, 191, 110200. [
DOI:10.1016/j.envres.2020.110200]
33. Zhao, F., Ma, S., Wu, Y., Qiu, L., Wang, W., Lian, Y., Chen, J., & Sivakumar, B. (2022). The role of climate change and vegetation greening on evapotranspiration variation in the Yellow River Basin, China. Agricultural and Forest Meteorology, 316, 108842. [
DOI:10.1016/j.agrformet.2022.108842]