1. Abbas, S. A., Xuan, Y., & Bailey, R. T. (2022). Assessing climate change impact on water resources in water demand scenarios using SWAT-MODFLOW-WEAP. Journal of Hydrology, 9(10), 1-24. [
DOI:10.3390/hydrology9100164]
2. Abbaspour, K. C., Faramarzi, M., Ghasemi, S. S., & Yang, H. (2009). Assessing the impact of climate change on water resources in Iran. Water Resources Research, 45(10), 1-16. [
DOI:10.1029/2008WR007615]
3. Anderson, M., & Woessner, W. (1992). Applied groundwater modeling: Simulation of flow and advective transport. Academic Press.
4. Ansari, S., Massah Bavani, A. R., & Roozbahani, A. (2016). Effects of climate change on groundwater recharge (Case study: Sefid Dasht Plain). Journal of Water and Soil, 30(2), 416-431. [In Persian]
5. Asakereh, H., & Akbarzadeh, Y. (2017). Simulation of temperature and precipitation changes of Tabriz synoptic station using statistical downscaling and CanESM2 climate change model output. Journal of Geography and Environmental Hazards, 6(1), 153-174. [In Persian]
6. Azari, A., Akhoond-Ali, A. M., Radmanesh, F., & Haghighi, A. (2014). Groundwater-surface water interaction simulation in terms of integrated water resource management (Case study: Dez Plain). Journal of Irrigation Sciences and Engineering, 38(2), 33-47. [In Persian]
7. Azizi, H., Ebrahimi, H., Samani, H. M. V., & Khaki, V. (2021). Evaluating the effects of climate change on groundwater level in the Varamin plain. Water Supply, 21(3), 1372-1384. [
DOI:10.2166/ws.2021.007]
8. Cheema, S. B., Rasul, G., Ali, G., & Kazmi, D. H. (2011). A comparison of minimum temperature trends with model projections. Pakistan Journal of Meteorology, 8(15), 39-52.
9. Cohen, B. (2006). Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. Technology in Society, 28(1-2), 63-80. [
DOI:10.1016/j.techsoc.2005.10.005]
10. Ficklin, D. L., Luo, Y., Luedeling, E., & Zhang, M. (2009). Climate change sensitivity assessment of a highly agricultural watershed using SWAT. Journal of Hydrology, 374(1-2), 16-29. [
DOI:10.1016/j.jhydrol.2009.05.016]
11. Gupta, H. V., Sorooshian, S., & Yapo, P. O. (1999). Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. Journal of Hydrology Engineering, 4(2), 135-143. [
DOI:10.1061/(ASCE)1084-0699(1999)4:2(135)]
12. Harbaugh, A. W., Banta, E. R., Hill, M. C., & McDonald, M. G. (2000). MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model: User Guide to Modularization Concepts and the Groundwater Flow Process. [
DOI:10.3133/ofr200092]
13. Hashemi, F., Olesen, J. E., Jabloun, M., & Hansen, A. L. (2018). Reducing uncertainty of estimated nitrogen load reductions to aquatic systems through spatially targeting agricultural mitigation measures using nitrogen reduction. Journal of Environmental Management, 218, 451-464. [
DOI:10.1016/j.jenvman.2018.04.078]
14. Hellström, D., Jeppsson, U., & Kärrman, E. (2000). A framework for systems analysis of sustainable urban water management. Environmental Impact Assessment Review, 20(3), 311-321. [
DOI:10.1016/S0195-9255(00)00043-3]
15. Howe, C., & Mitchell, C. (2011). Water Sensitive Cities. IWA Publishing. [
DOI:10.2166/9781843393641]
16. Karamouz, M., Fallahi, M., Nazif, S., & Rahimi Farahani, M. (2009). Long lead rainfall prediction using statistical downscaling and artificial neural network modeling. Scientia Iranica, 16(1), 165-172.
17. Mackay, R., & Last, E. (2010). SWITCH city water balance: A scoping model for integrated urban water management. Reviews in Environmental Science and Bio/Technology, 9(4), 291-296. [
DOI:10.1007/s11157-010-9225-4]
18. Mansouri, B., Ahmadzadeh, H., Massah Bavani, A., Morid, S., Delavar, M., & Lotfi, S. (2015). Assessment of climate change impacts on water resources in Zarrinehrud Basin using SWAT model. Journal of Water and Soil, 28(6), 1203-1291. [In Persian]
19. Meenu, R., Rehana, S., & Mujumdar, P. P. (2013). Assessment of hydrologic impacts of climate change in Tunga-Bhadra river basin, India with HEC-HMS and SDSM. Hydrological Processes, 27(11), 1572-1589. [
DOI:10.1002/hyp.9220]
20. Mirani Moghadam, H., Karami, G. H., Bagheri, R., & Barati, R. (2021). Death time estimation of water heritages in Gonabad plain, Iran. Environmental Earth Sciences, 80(4), 1-10. [
DOI:10.1007/s12665-021-09424-w]
21. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models, part I- A discussion of principles. Journal of Hydrology, 10(3), 282-290. [
DOI:10.1016/0022-1694(70)90255-6]
22. Nitika, M., Devesh, S., & Aditya, S. (2024). Groundwater sustainability assessment under climate change scenarios using integrated modelling approach and multi-criteria decision method. Ecological Modelling, 478.
23. Ostad-Ali-Askari, K. (2022). Investigation of meteorological variables on runoff archetypal using SWAT: Basic concepts and fundamentals. Applied Water Science, 12(8), 177. [
DOI:10.1007/s13201-022-01701-8]
24. Piri, H., Mobaraki, M., & Siasar, S. (2022). Temporal and spatial modeling of groundwater level in Bushehr plain using artificial intelligence and geostatistics. Journal of Watershed Management Research, 13(26), 58-68.
https://doi.org/10.52547/jwmr.13.26.58 [
DOI:10.52547/jwmr.13.26.58. [In Persian]]
25. Qiu, S., Liang, X., Xiao, C., Huang, H., Fang, Z., & Lv, F. (2015). Numerical simulation of groundwater flow in a river valley basin in an urban area, China. Water, 7(10), 5768-5787. [
DOI:10.3390/w7105768]
26. Riasat, A., McFarlane, D., Varma, S., Dawes, W., Emelyanova, I., Hodgson, G., & Charles, S. (2012). Potential climate change impacts on groundwater resources of south-western Australia. Journal of Hydrology, 475, 456-472. [
DOI:10.1016/j.jhydrol.2012.04.043]
27. Safari Sokhtehkolaei, F., NoRooz Valashedi, R., & Khoshravesh, M. (2022). Evaluation of extreme scenarios of climate change on discharge of the Shahid Rajaei Dam catchment under HBV-light model. Journal of Watershed Management Research, 13(26), 93-104.
https://doi.org/10.52547/jwmr.13.26.93 [
DOI:10.52547/jwmr.13.26.93. [In Persian]]
28. Safavi, H., Alizadeh, M., & Golmohammadi, M. H. (2022). Investigating the effects of management scenarios against climate change on river-aquifer interaction, case study: Lenjanat Sub-basin. Journal of Water and Wastewater Science and Engineering, 7(3), 16-27. [In Persian]
29. Sari Sarraf, B., & Jalali Ansaroodi, T. (2019). The investigation of the impact of climate change on water balance caused by precipitation in Tasuj aquifer for the period of 2017-2030. Hydrogeomorphology, 6(19), 163-185. [In Persian]
30. Sheikha-BagemGhaleh, S., Babazadeh, H., Rezaie, H., & Sarai-Tabrizi, M. (2023). The effect of climate change on surface and groundwater resources using WEAP-MODFLOW models. Applied Water Science, 13, 121. [
DOI:10.1007/s13201-023-01923-4]
31. Toews, M. W., & Allen, D. M. (2009). Simulated response of groundwater to predicted recharge in a semi-arid region using a scenario of modelled climate change. Environmental Research Letters, 4(3), 1-19. [
DOI:10.1088/1748-9326/4/3/035003]
32. Van der Steen, P., & Howe, C. (2009). Managing water in the city of the future; strategic planning and science. Reviews in Environmental Science and Biotechnology, 8(2), 115-120. [
DOI:10.1007/s11157-009-9154-2]
33. Yaoti, F. E., Mandoure, A. E., & Khattach, D. (2008). Modeling groundwater flow and advective contaminant transport in Bou-Areg unconfined aquifer. Journal of Hydro-Environment Research, 2, 192-209. [
DOI:10.1016/j.jher.2008.08.003]
34. Zhang, A., Zhang, C., Fu, G., Wang, B., Bao, Z., & Zheng, H. (2012). Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, Northeast China. Water Resources Management, 26(8), 2199-2217. [
DOI:10.1007/s11269-012-0010-8]
35. Zhang, H., & Hiscock, K. M. (2010). Modelling the impact of forest cover on groundwater resources: A case study of the Sherwood Sandstone aquifer in the East Midlands, UK. Journal of Hydrology, 392(3-4), 136-149. [
DOI:10.1016/j.jhydrol.2010.08.002]