Volume 9, Issue 18 (1-2019)                   jwmr 2019, 9(18): 91-110 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Memarian H, Pourreza Bilondi M, Zinat Komeh Z K. Parameters Optimization of KINEROS2 using Particle Swarm Optimization Algorithm for Single Event Rainfall-Runoff Simulation (Case Study: Tamar Watershed, Golestan, Iran) . jwmr. 2019; 9 (18) :91-110
URL: http://jwmr.sanru.ac.ir/article-1-746-en.html
Abstract:   (678 Views)

Simulation of rainfall-runoff process for planning and management of water resources and watersheds requires the use of a conceptual optimized hydrological model. In this study, the hydroPSO package was employed to optimize KINEROS2 (K2) parameters applied in the Tamar watershed, Iran. Four storm events were utilized in hydrograph simulation. Results indicated better efficiency of K2 based on the event #2 with the coefficient of determination and Nash-Sutcliffe Efficiency (NSE) of 0.9084 and 0.92, respectively. The events #3 and #4 with NSE of 0.89 and 0.86 showed the excellent and very good fitness of simulated flow compared to observed flow, respectively. Sensitivity analysis established that the parameters Ks_p, Ks_c, n_p, n_c, CV_p and Sat were the most effective parameters in K2 calibration, respectively. The posterior distributions of some parameters such as Ks_p and n_c appeared to be more sharply peaked than other parameters which established less uncertainty in hydrological modeling. Visual inspection of boxplots showed that for 6 out of 16 parameters (Ks_c, n_c, G_c, Rock, Dist_c and Smax) the optimum value found during the optimization coincided with the median of all the sampled values confirming that most of the particles converged into a small region of the solution space. Dotty plots showed that the optimum values found for Ks_p, Ks_c, and n_c define a narrow range of the parameter space with high model performance. On the other hand, the model performance was more impacted by the interaction of Ks and n parameters. The parameters CV_p and n_p showed a wider range of the optimized levels. Correlation analysis revealed that the highest linear correlation between the NSE and K2 parameters was obtained for the Ks­_p, Ks_c and n_p, followed by CV_p, G_c, Por_p, Dist_p and Smax. Conclusively, this work demonstrated the capability of hydroPSO in optimization of the K2 as an event-based hydrological model.

Full-Text [PDF 2909 kb]   (246 Downloads)    
Type of Study: Research | Subject: هيدرولوژی
Received: 2017/01/12 | Revised: 2019/01/21 | Accepted: 2017/07/3 | Published: 2019/01/21

References
1. 1. Abdelaziz, R. and M. Zambrano-Bigiarini. 2014. Particle swarm optimization for inverse modeling of solute transport in fractured gneiss aquifer. Journal of contaminant hydrology, 164: 285-298. [DOI:10.1016/j.jconhyd.2014.06.003]
2. Al-Qurashi, A., N. McIntyre, H. Wheater and C. Unkrich. 2008. Application of the Kineros2 rainfall-runoff model to an arid catchment in Oman. Journal of Hydrology, 355(1): 91-105. [DOI:10.1016/j.jhydrol.2008.03.022]
3. Azizian, A. and A.Shokoohi. 2014. DEM resolution and stream delineation threshold effects on the results of geomorphologic-based rainfall runoff models. Turkish Journal of Engineering and Environmental Sciences, 38(1): 64-78. [DOI:10.3906/muh-1401-13]
4. Baltar, A. and D.G. Fontane. 2004. A multiobjective particle swarm optimization model for reservoir operations and planning. Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colo. 10 pp.
5. Beven, K. and A. Binley.1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological processes, 6(3): 279-298. [DOI:10.1002/hyp.3360060305]
6. Bloomfield, V.A. 2014. Using R for Numerical Analysis in Science and Engineering. CRC Press, 359 pp. [DOI:10.1201/b16841]
7. Canfield, H. and D. Goodrich. 2006. Differentiating the impact of parameter lumping from the impact of geometric simplification in modeling runoff and erosion 1584. Hydrological Processes, 20(1): 17-35. [DOI:10.1002/hyp.5896]
8. Cleveland, W.S. 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American statistical association, 74(368): 829-836. [DOI:10.1080/01621459.1979.10481038]
9. Doherty, J., L. Brebber and P. Whyte. 1994. PEST: Model-independent parameter estimation. Watermark Computing, Corinda, Australia, 122 pp.
10. Gholami, V. and M. Mohseni Saravi. 2010. Effects of impervious surfaces and urban development on runoff generation and flood hazard in the Hajighoshan watershed. Caspian Journal of Environmental Sciences, 8(1): 1-12.
11. Gill, M.K., Y.H. Kaheil, A. Khalil, M. McKee and L. Bastidas. 2006. Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resources Research, 42(7). [DOI:10.1029/2005WR004528]
12. Guber, A.K., A.M. Yakirevich, AM. Sadeghi, Y.A. Pachepsky and D.R. Shelton. 2009. Uncertainty evaluation of coliform bacteria removal from vegetated filter strip under overland flow condition. Journal of environmental quality, 38(4): 1636-1644. [DOI:10.2134/jeq2008.0328]
13. Guber, A.K., Y.A. Pachepsky, A.M. Yakirevich, D.R. Shelton, A.M. Sadeghi, D.C. Goodrich and C.L. Unkrich. 2011. Uncertainty in modelling of faecal coliform overland transport associated with manure application in Maryland. Hydrological processes, 25(15): 2393-2404. [DOI:10.1002/hyp.8003]
14. Gupta, H.V., S. Sorooshian and P.O. Yapo. 1999. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. Journal of Hydrologic Engineering, 4(2): 135-143. [DOI:10.1061/(ASCE)1084-0699(1999)4:2(135)]
15. Hernandez, M., S.N. Miller, D.C. Goodrich, B.F. Goff, W.G. Kepner, C.M. Edmonds and K.B. Jones. 2000. Modeling runoff response to land cover and rainfall spatial variability in semi-arid watersheds. In Monitoring Ecological Condition in the Western United States (pp: 285-298). Springer Netherlands. [DOI:10.1007/978-94-011-4343-1_23]
16. Jiang, Y., C. Liu, C. Huang and X. Wu. 2010. Improved particle swarm algorithm for hydrological parameter optimization. Applied Mathematics and Computation, 217(7): 3207-3215. [DOI:10.1016/j.amc.2010.08.053]
17. Kamali, B., S.J. Mousavi and K.C. Abbaspour. 2013. Automatic calibration of HEC‐HMS using single‐objective and multi‐objective PSO algorithms. Hydrological Processes, 27(26): 4028-4042. [DOI:10.1002/hyp.9510]
18. Kalin, L. and M.M. Hantush. 2003. Evaluation of sediment transport models and comparative application of two watershed models. US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 81 pp.
19. Kasmaei, L.P., R. Van Der Sant, P.J. Lane and G. Sheriadan. 2015. ‌Modelling overland flow on burned hillslopes using the KINEROS2 model. 21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 Nov t0 4 Dec 2015. 222-228.
20. Kennedy, J. and R. Eberhart. 1995. Particle swarm optimization. In: Proceedings IEEE International Conference on Neural Networks, pp: 1942-1948.
21. Kennedy, J.R., D.C. Goodrich and C.L. Unkrich. 2012. Using the KINEROS2 modeling framework to evaluate the increase in storm runoff from residential development in a semiarid environment. Journal of Hydrologic Engineering, 18(6): 698-706. [DOI:10.1061/(ASCE)HE.1943-5584.0000655]
22. Koster, G. 2013. Mapping runoff and erosion to reduce urban flooding and sediment flow towards sea, A case study on the Playa catchment, Bonaire. MSc. Thesis. Water Resources Management Group, WAGENINGEN University, 81 pp.
23. Martínez-Carreras, N., M. Soler, E. Hernández and F. Gallart. 2007. Simulating badland erosion with KINEROS2 in a small Mediterranean mountain basin (Vallcebre, Eastern Pyrenees). Catena, 71(1): 145-154. [DOI:10.1016/j.catena.2006.05.013]
24. McCuen, R.H. 1989. Hydrologic analysis and design (pp: 143-147). Englewood Cliffs, NJ: Prentice-Hall.
25. McCuen, R.H. and W.M. Snyder. 1975. A proposed index for comparing hydrographs. Water Resources Research, 11(6): 1021-1024. [DOI:10.1029/WR011i006p01021]
26. Memarian, H., S.K. Balasundram, J. Talib, C.B.S. Teh, M.S. Alias, K.C. Abbaspour and A. Haghizadeh. 2012. Hydrologic Analysis of a Tropical Watershed using KINEROS2. Environment Asia, 5(1): 84-93
27. Memarian, H., S.K. Balasundram, J.B. Talib, C. Teh Boon Sung, A. Mohd Sood and K.C. Abbaspour. 2013. KINEROS2 application for land use/cover change impact analysis at the Hulu Langat Basin, Malaysia. Water and Environment Journal, 27(4): 549-560. [DOI:10.1111/wej.12002]
28. Meyer, P.D., M.L. Rockhold and G.W. Gee. 1997. Uncertainty analyses of infiltration and subsurface flow and transport for SDMP sites (No. NUREG/CR--6565; PNNL--11705). Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications; Pacific Northwest National Lab., Richland, WA (United States). [DOI:10.2172/541818]
29. Michaud, J.D. and S. Sorooshian. 1994. Effect of rainfall‐sampling errors on simulations of desert flash floods. Water Resources Research, 30(10): 2765-2775. [DOI:10.1029/94WR01273]
30. Mirzaei, M., Y.F. Huang, A. El-Shafie, T. Chimeh, J. Lee, N. Vaizadeh and J. Adamowski. 2015. Uncertainty analysis for extreme flood events in a semi-arid region. Natural Hazards, 78(3): 1947-1960. [DOI:10.1007/s11069-015-1812-9]
31. Molaeifar, A. 2013. KINEROS2 evaluation for hydrograph simulation of Ziarat watershed. M.Sc. Thesis, Gorgan University of Agriculture and Natural Resources, 95 pp (In Persian).
32. Moriasi, D.N., J.G. Arnold, M.W. Van Liew, R.L. Bingner, R.D. Harmel and T.L. Veith. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3): 885-900. [DOI:10.13031/2013.23153]
33. Musau, J., J. Sang, J. Gathenya, E. Luedeling and P. Home. 2015. SWAT model parameter calibration and uncertainty analysis using the HydroPSO R package in Nzoia Basin, Kenya. Journal of Sustainable Research in Engineering, 1(3): 17-29. [DOI:10.1016/j.ejrh.2014.12.001]
34. Nachtergaele, F., H. Van Velthuizen, L. Verelst, N. Batjes, K. Dijkshoorn, V. Van Engelen and S. Prieler. 2008. Harmonized world soil database. Food and Agriculture Organization of the United Nations.
35. Namavar, B. 2011. Runoff simulation in Kameh watershed using Kineros2 and AGWA-GIS. M.Sc. thesis, Ferdowsi University of Mashhad, 85 pp (In Persian).
36. Nash, J.E. and J.V. Sutcliffe. 1970. River flow forecasting through conceptual models part I-A discussion of principles. Journal of hydrology, 10(3): 282-290. [DOI:10.1016/0022-1694(70)90255-6]
37. Nearing, M.A., V. Jetten, C. Baffaut, O. Cerdan, A. Couturier, M. Hernandez and V. Souchère. 2005. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena, 61(2): 131-154. [DOI:10.1016/j.catena.2005.03.007]
38. Neitsch, S.L., J.R. Williams, J.G. Arnold and J.R. Kiniry. 2011. Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.
39. Nikolova, M., S. Nedkov, V. Nikolov, I. Zuzdrov, M. Genev, T. Kotsev and Y. Krumova. 2009. Implementation of the" KINEROS" model for estimation of the flood prone territories in the Malki Iskar River basin. Information and Security, 24, 76. [DOI:10.11610/isij.2408]
40. Onstad, C.A. and D.L. Brakensiek. 1968. Watershed simulation by stream path analogy. Water Resources Research, 4(5): 965-971. [DOI:10.1029/WR004i005p00965]
41. Parsopoulos, K.E. and M.N. Vrahatis. 2002. Recent approaches to global optimization problems through particle swarm optimization. Natural computing, 1(2-3): 235-306. [DOI:10.1023/A:1016568309421]
42. Poli, R., J. Kennedy and T. Blackwell. 2007. Particle swarm optimization. Swarm intelligence, 1(1): 33-57.Rovey, E.W. 1977. A distributed kinematic model of upland watersheds. Hydrology papers (Colorado State University); no. 93. [DOI:10.1007/s11721-007-0002-0]
43. Safari, A., F. De Smedt and F. Moreda. 2012. WetSpa model application in the distributed model intercomparison project (DMIP2). Journal of Hydrology, 418: 78-89. [DOI:10.1016/j.jhydrol.2009.04.001]
44. Schaffner, M., C.L. Unkrich and D.C. Goodrich. 2010. Application of the KINEROS2 site specific model to south-central NY and northeast PA: forecasting gaged and ungaged fast responding watersheds. NWS Eastern Region Technical Attatchment, 1, 2010.
45. Semmens, D.J., D.C. Goodrich, C.L. Unkrich, R.E. Smith, D.A. Woolhiser and S.N. Miller. 2008. KINEROS2 and the AGWA modelling framework. In Hydrological modelling in arid and semi-arid areas, Wheater, H., Sorooshian, S. and Sharma, K.D. (eds.). Cambridge University Press, New York. 49-69. [DOI:10.1017/CBO9780511535734.006]
46. Shafiei, M., B. Ghahraman, B. Saghafian, K. Davary, S. Pande and M. Vazifedoust. 2014. Uncertainty assessment of the agro-hydrological SWAP model application at field scale: A case study in a dry region. Agricultural Water Management, 146: 324-334. [DOI:10.1016/j.agwat.2014.09.008]
47. Shen, Z.Y., L. Chen and T. Chen. 2012. Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method: a case study of SWAT model applied to Three Gorges Reservoir Region, China. Hydrology and Earth System Sciences, 16(1): 121-132. [DOI:10.5194/hess-16-121-2012]
48. Smith, R.E., D.C. Goodrich and C.L. Unkrich.1999. Simulation of selected events on the Catsop catchment by KINEROS2: a report for the GCTE conference on catchment scale erosion models. Catena, 37(3): 457-475. [DOI:10.1016/S0341-8162(99)00033-8]
49. Smith, R.E. and J.Y. Parlange.1978. A parameter‐efficient hydrologic infiltration model. Water Resources Research, 14(3): 533-538. [DOI:10.1029/WR014i003p00533]
50. Sorooshian, S. and V.K. Gupta. 1983. Automatic calibration of conceptual rainfall‐runoff models: The question of parameter observability and uniqueness. Water Resources Research, 19(1): 260-268. [DOI:10.1029/WR019i001p00260]
51. Sorooshian, S. and V.K. Gupta. 1995. Model calibration. Computer models of watershed hydrology, 23-68.
52. Van Griensven, A., T. Meixner, S. Grunwald, T. Bishop, M. Diluzio and R. Srinivasan. 2006. A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of hydrology, 324(1): 10-23. [DOI:10.1016/j.jhydrol.2005.09.008]
53. Vatseva, R., S. Nedkov, M. Nikolova and T. Kotsev. 2008. Modeling land cover changes for flood hazard assessment using Remote Sensing data. In Geospatial crossroads@ GI Forum'08-Proceedings of the Geoinformatics Forum Salzburg, pp: 262-267.
54. Vrugt, J.A. and B.A. Robinson. 2007. Improved evolutionary optimization from genetically adaptive multimethod search. Proceedings of the National Academy of Sciences, 104(3): 708-711. [DOI:10.1073/pnas.0610471104]
55. Wagener, T. and S.W. Franks. 2005. Regional Hydrological Impacts of Climatic Change: Hydroclimatic variability (Vol. 2). International Assn of Hydrological Sciences.
56. Woolhiser, D.A., C.L. Hanson and A.R. Kuhlman. 1970. Overland flow on rangeland watersheds. Journal of Hydrology (NZ), 9(2): 336-356.
57. Woolhiser, D.A., R.E. Smith and D.C. Goodrich. 1990. KINEROS: a kinematic runoff and erosion model: documentation and user manual. US Department of Agriculture, Agricultural Research Service, 139 pp.
58. Zambrano-Bigiarini, M. and R. Rojas. 2013. A model-independent Particle Swarm Optimisation software for model calibration. Environmental Modelling and Software, 43: 5-25. [DOI:10.1016/j.envsoft.2013.01.004]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2020 All Rights Reserved | Journal of Watershed Management Research

Designed & Developed by : Yektaweb