دوره 10، شماره 19 - ( بهار و تابستان 1398 )                   جلد 10 شماره 19 صفحات 154-170 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdi Bastami S, Memarian H, Tajbakhsh S M, Azamy Rad M. Prioritization of Landslide Effective Factors using Logistic Regression (Case Study: A part of KopeDagh-HezarMasjedZone) . jwmr. 2019; 10 (19) :154-170
URL: http://jwmr.sanru.ac.ir/article-1-871-fa.html
عبدی بسطامی شیوا، معماریان هادی، تاجبخش سید محمد، اعظمی راد محمود. اولویت بندی عوامل مؤثر در وقوع زمین لغزش با استفاده از روش رگرسیون لجستیک (مطالعه موردی: بخشی از زون کپه داغ- هزار مسجد) . پ‍‍ژوهشنامه مديريت حوزه آبخيز. 1398; 10 (19) :154-170

URL: http://jwmr.sanru.ac.ir/article-1-871-fa.html


مهندسی آبخیزداری دانشگاه بیرجند
چکیده:   (228 مشاهده)
زمین­ لغزش در ایران به ­عنوان یک مخاطره طبیعی، سالانه خسارات جانی و مالی فراوانی را به­ همراه دارد. لذا انجام مطالعات در این زمینه برای ارائه راه­کار­های مفید به‌منظور پیشگیری و کاهش خسارات ناشی از زمین­ لغزش، امری اجتناب­ ناپدیر است. بر همین اساس پژوهش حاضر با استفاده از روش آماری رگرسیون لجستیک به اولویت­ بندی عوامل مؤثر در ایجاد زمین ­لغزش­های به­ وقوع پیوسته در بخشی از زون زمین ­شناسی کپه­ داغ-هزار­مسجد در شمال‌شرق ایران که به­ دلیل شرایط طبیعی منطقه و اقدامات انسانی، دارای لغزش­های بسیاری می ­باشد، پرداخته است. به همین منظور، پس از اعمال توابع GIS در لایه ­های اطلاعاتی اولیه، آنالیز رگرسیون لجستیک، روی داده­ها صورت گرفت و پس از تعیین عوامل مؤثر، فراوانی زمین­ لغزش‌ها در هر طبقه مشخص شد. بر اساس مقادیر جدول آنالیز نوع دوم در رگرسیون لجستیک، از بین همه عوامل انتخاب‌شده، عامل خاک با کم‌ترین مقدار نسبت Pr> LR (001/0)، مهم­ترین فاکتور در ایجاد زمین ­لغزش شناخته شد. پس از خاک، عامل ارتفاع، لایه زمین­ شناسی، شاخص­های موقعیت توپوگرافی، توان رودخانه، پوشش ­گیاهی، شاخص زبری و کاربری اراضی به ­ترتیب با اختصاص مقادیر احتمال Pr> LR، 002/0، 003/0، 004/0، 032/0، 036/0، 100/0 و 109/0 بیش‌ترین تأثیر را در وقوع زمین­ لغزش‌های منطقه مورد مطالعه ایفا می­ کنند. هم‌چنین چهار عامل اولیه در سطح اطمینان 99 درصد و سایر عوامل در سطح اطمینان 95 درصد در وقوع
زمین ­لغزش­های منطقه مورد مطالعه مؤثر شناخته شدند.

 
متن کامل [PDF 2964 kb]   (41 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: بلايای طبيعی (سيل، خشکسالی و حرکت های توده ای)
دریافت: ۱۳۹۶/۸/۱۳ | ویرایش نهایی: ۱۳۹۸/۵/۱۴ | پذیرش: ۱۳۹۷/۶/۵ | انتشار: ۱۳۹۸/۵/۱۲

فهرست منابع
1. 1. Abedini, M., B. Gasemyan and A.A. SHirzadi. 2015. Modelling the Hazard of Landslides by Using Statistical Method of Logistic Regression (Case study: Bijar of Kordestan). Journal of Geographi and development, 7(37): 85-102 (In Persian).
2. Basu, T. and S. Pal. 2018. Identification of landslide susceptibility zones in Gish River basin, West Bengal, India. Georisk. Journal of Assessment and Management of Risk for Engineered Systems and Geohazards, 12(1): 14-28. [DOI:10.1080/17499518.2017.1343482]
3. Chen, Z. and J. Wang. 2007. Land slide hazard mapping using logistic regression model in Mskenzie Vally, Canada, Natural Hazards, 42: 75-89. [DOI:10.1007/s11069-006-9061-6]
4. Choi, J., H.J. Oh, H.J. Lee, C. Lee and S. Lee. 2012. Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Engineering Geology, 124: 12-23. [DOI:10.1016/j.enggeo.2011.09.011]
5. Convertino, M., A. Troccoli and F. Catani. 2013. Detecting fingerprints of landslide drivers: a MaxEnt model. Journal of Geophysical Research: Earth Surface, 118(3): 1367-1386. [DOI:10.1002/jgrf.20099]
6. Costanzo, D., E. Rotigliano, C. Irigaray Fernández, J.D. Jiménez-Perálvarez and J. Chacón Montero. 2012. Factors selection in landslide susceptibility modelling on large scale following the GIS matrix method: application to the river Beiro basin (Spain). Journal of Natural Hazards and Earth System Sciences, 12: 327-340. [DOI:10.5194/nhess-12-327-2012]
7. Dahal, R.K., S. Hasegawa, A. Nonomura, M. Yamanaka, S. Dhakal and P. Paudyal. 2008. Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Journal of Geomorphology, 102: 496-510.‌ [DOI:10.1016/j.geomorph.2008.05.041]
8. Darvishzadeh, A. 2005. Geology of Iran. Amir Kabir press, Tehran, Iran. 901 pp (In Persian).
9. Deng, X., L. Li and Y. Tan. 2017. Validation of Spatial Prediction Models for Landslide Susceptibility Mapping by Considering Structural Similarity. ISPRS International Journal of Geo-Information,6: 1-16.‌ [DOI:10.3390/ijgi6040103]
10. Ebrahimi, M., M. Habibolelahiyan and A. Amir Ahmadi. 2015. Investigating the effect of road construction on surface landslides occurrence using slopes stability model, (Case study: Kalat Watershed). Journal of Geographical Planing of Space Quarterly, 59(15): 149-162 (In Persian).
11. Emami, S.N., A. Jalaliyan and A. Khosravi. 2016. The role of physical and chemical properties of soil in the occurrence of landslide, (Case study: Afsar Abad Chaharmahal va Bakhtiari). Journal of Watershed Management Research, 7(13): 182-192 (In Persian). [DOI:10.18869/acadpub.jwmr.7.13.192]
12. Ezati. M., M. AghAtabai, M. Raghimi and Sh. Shataee. 2012. Analysis of Some Morphotectonic Indices of Shirinrud Subcatchment, (Case study: Central Kopeh Dagh). Journal of Geographic Planning of Space Quarterly, 2(6): 1-16 (In Persian).
13. FazeliSHahroodi, E. and S.A. Hosseyni. 2013. Investigating the Factors of Occurrences of forest andslide. 8th Iranian Engineering and Environmental Geology Congress, Mashhad, Iran, 1-9 (In Persian).
14. Florinsky, I. 2016. Digital terrain analysis in soil science and geology. Academic Press, ‌506 pp. [DOI:10.1016/B978-0-12-804632-6.00001-8]
15. Fooruzanfar, M., GH.Vahabzadeh and H.R. Pourghasemi. 2014. Landslide Susceptibility Mapping Using Fusion Models of Frequency Ratio (FR) and Analytical Hierarchy Process (AHP) (Case study: Talar basin). Journal of Environmental Erosion Research, 3(4): 17-29 (In Persian).
16. Garfi, G., D.E. Bruno, D. Calcaterra and M. Parise. 2007. Fan morph dynamics and slope instability in the Mucone River basin (Sila Massif, southern Italy): significance of weathering and role of land use changes. Catena, 69: 181-196.‌ [DOI:10.1016/j.catena.2006.06.003]
17. Ghafouri, M. and A.R. Ashouri. 1997. Landslide as one of the natural disasters in northern Khorasan. Journal of Geographic Research, 445: 90-101.
18. Ghanavati, E.A. 2011. Land slide zoning using hierarchical analysis method (Case study: Jajrood basin). Journal of Applied Geosciences Research, 8(20): 51-68 (In Persian).
19. Gharehshaeikhloo, A.H., M.R. Vahabi and H.R. Karimzadeh. 2010. Comparison of soil characteristics of land withwithout vegetation (Case study: Dagh-e-SorkhArdestan catchment). Journal of Science and Technology of Agriculture and Natural Resources, 14(53): 89-97 (In Persian).
20. Ghavimipanah, M.H., A.A. Khaledi Darvishan and M.R. Ghavimipanah. 2017. Verification Methods of Analytical Hierarchy Process (AHP) and Multivariate Regression (MR) in Landslide Zoning (Case Study: Valiasr Watershed in Ardabil Province). Journal of Ecohydrology, 4(3): 775-789 (In Persian).
21. Goetz, J.N., R.H. Guthrie and A. Brenning. 2011. Integrating physical and empirical landslide susceptibility models using generalized additive models.Journal of Geomorphology, 129 (3-4): 376-386.‌ [DOI:10.1016/j.geomorph.2011.03.001]
22. Gorum, T., B. Gonencgil, C. Gokceoglu and H.A. Nefeslioglu. 2008. Implementation of reconstructed geomorphologic units in landslide susceptibility mapping: the Melen Gorge (NW Turkey). Natural Hazards, 46: 323-351.‌ [DOI:10.1007/s11069-007-9190-6]
23. Hall, F.G., J.R. Townshend and E.T. Engman. 1995. Status of remote sensing algorithms for estimation of land surface state parameters. Journal of Remote Sensing of Environment, 51(1): 138-156.‌ [DOI:10.1016/0034-4257(94)00071-T]
24. Hemati, F. and S.A. Hejazi. 2017. Landslide hazard zonation using logistic regression statistical method (Case study: Lavasanat Watershed). Applied Researches in Geographical Seiences, 17(45): 7-24 (In Persian).
25. Hosmer, D.W. and S. Lemeshow. 2000. Applied Logistic Regression, Second Edition. John Wiley and Sons, New York. Doi: 10.1002/0471722146. [DOI:10.1002/0471722146]
26. Hosseinzadeh, M.M., M.R. Servati, A. Mansoori, B. Mirbagheri and S. Khazri. 2009. Zoning the risk of massmovement occurrences using logestic regression model, (Case study:in vicinity of Sanandaj-Dehgolan road). Journal of Geology, 3(11): 27-37 (In Persian).
27. Ilanloo, M., E. Moghimi, M.R. Servati and M. GhahroodiTali. 2010. Zoning the Risk of Mass Moves Using Fuzzy Logic Method (Case Study: Sierra Watershed). Journal of Georraphical Landscape, 5(11): 12-26 (In Persian).
28. Ildormi, A.R., H. Nori, M. Naderi, A. Aghbeigi and H. Zeinivand. 2015. Land use Change Prediction using Markov Chain and CA Markov Model, (Case Study: Gareen Watershed). Journal of Watershed Management Research, 8(16): 232-240 (In Persian).
29. Jenks, G.F. 1967. The data model concept in statistical mapping. International yearbook of cartography,7: 186-190.‌
30. Jenness, J. 2006. Topographic Position Index extension for ArcView 3. x, v. 1.3 a. Jenness Enterprises.[online: www. jennessent. com/arcview/tpi. htm].
31. Kalarestaghi, A.A., M. Habibnejad and H. Ahmadi. 2007. Study of landslide occurrence in relation to land use change and road construction, (Case study: Tajan watershed, Sari). Journal of Geographic research, 1849: 81-91.
32. KarimiSangchini, E., M. Ownegh and A. Sadoddin. 2016. Landslide Hazard Management for Two Normal and Critical Scenarios in the Chehel-Chay Watershed, Golestan Province. Journal of Watershed Management Research, 7(13): 173-181. [DOI:10.18869/acadpub.jwmr.7.13.181]
33. Lee, C.T., C.C. Huang, J.F. Lee, K.L. Pan, M.L. Lin and J.J. Dong. 2008. Statistical approach to earthquake-induced landslide susceptibility. Journal of Engineering Geology, 100: 43-58.‌ [DOI:10.1016/j.enggeo.2008.03.004]
34. Lee, S.A. 2004. Verification of Spatial Logistic Regression for Landslide Susceptibility Analysis: A Case Study of Korea. Journal of Geomorphology, 44: 15-18.
35. Lillesand, T., R.W. Kiefer and J. Chipman. 2014. Remote sensing and image interpretation. John Wiley & Sons, Hoboken.
36. Lindsay, J.B. 2005. The terrain analysis system: A tool for hydro‐geomorphic applications. Hydrological Processes, 19(5): 1123-1130. [DOI:10.1002/hyp.5818]
37. Liu, H.Q. and A. Huete. 1995. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing, 33: 457-465.‌ [DOI:10.1109/TGRS.1995.8746027]
38. Maleki, A., H. Marabi and H. Rahimi. 2016. Evaluation of Topographic Position Index (TPI), (Case Study: Zone Sanandaj-Sirjan and Broken Zagros). Journal of Quantitative Geomorphology Research, 5(1): 129-141 (In Persian).
39. Memarian, H., S.K. Balasundram, J.B. Talib, C.T.B. Sung, A.M. Sood and K. Abbaspour. 2012. Validation of CA-Markov for simulation of land use and cover change in the Langat Basin, Malaysia. Journal of Geographic Information System, 4(6): 542-554. [DOI:10.4236/jgis.2012.46059]
40. Memarian, H., M. Tajbakhsh, A. Safdari and E. Akhondi. 2006. Statistical Landslide Risk Zonation on the Shourijeh Formation in GIS Framework, (Case study: Estarkhy Watershed in the Northeast of Iran).Geomatics Conference, Tehran, 1-11.
41. Moghimi, A., S.K. Alavipanah and T. Jafari. 2008. Evaluation and Zonation of Effective Factors on Landslide Occurrence of Aladagh Northern Slopes (Case study: Chenaran drainage basin in North Khorasan Province). Quarterly. Journal of Geographical Research, 64: 53-75 (In Persian).
42. Mohammadi, M., H.R. Moradi, S. Feiznia and H.R. Pourghasemi. 2009. Landslide hazard mapping using density area and AHP models. Journal of Watershed Engineering and Management, 1(4): 248-258.
43. Mondal, S. and S. Mandal. 2017. RS&GIS-based landslide susceptibility mapping of the Balason River basin, Darjeeling Himalaya, using logistic regression (LR) model. Journal of Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 1-16.‌ [DOI:10.1080/17499518.2017.1347949]
44. Moore, I.D., P.E. Gessler, G.A. Nielsen and G.A. Peterson. 1993. Soil attribute prediction using terrain analysis.Soil Science Society of America Journal, 57: 443-452.‌ [DOI:10.2136/sssaj1993.03615995005700020026x]
45. Moore, I.D., R.B. Graysonand A.R. Ladson. 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Journal of Hydrological Processes, 5: 3-30.‌ [DOI:10.1002/hyp.3360050103]
46. Moradi, H.R., M. Mohamadi and H.R. Poorghasemi. 2014. Domain moves (mass movements) with emphasis on quantitative methods of landslide analysis. Samtperss, 224 pp (In Persian).
47. Moradi, H.R., H.R. Pourghasemi, M. Mohammadi and M.R. Mahdifar. 2011. Landslide hazard zoning using Gamma fuzzy operator (Case study: Haraz watershed). Journal of Natural science, 7(4): 129-142 (In Persian).
48. Nachtergaele, F., H. van Velthuizen, L. Verelst, N. Batjes, K. Dijkshoorn, V. van Engelen, G. Fischer, A. Jones, L. Montanarella, M. Petri, S. Prieler, E. Teixeira, D. Wiberg and X. Shi. 2009. Harmonized world soil database. Wageningen: ISRIC, 1-43.‌
49. Negahban, S. and M. Mokarami. 2015. Landform classification using Topographic Position Index (TPI) (Case study: Hakan watershed, Jahrom city). Journal of Environmental Erosion Research, 5(17): 75-89 (In Persian).
50. Nefeslioglu, H.A., T.Y. Duman and S. Durmaz. 2008. Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey).Geomorphology, 94(3-4): 401-418. [DOI:10.1016/j.geomorph.2006.10.036]
51. Ocakoglu, F., C. Gokceoglu and M. Ercanoglu. 2002. Dynamics of a complex mass movement triggered by heavy rainfall: a case study from NW Turkey. Journal of Geomorphology, 42(3): 329-341. [DOI:10.1016/S0169-555X(01)00094-0]
52. Ohlamcher, G.C. and J.C. Davis. 2003. Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas USA. Journal of Engineering Geology, 69: 331-343. [DOI:10.1016/S0013-7952(03)00069-3]
53. Pachauri, A.K. and M. Pant. 1992. Landslide hazard mapping based on geological attributes. Journal of Engineering Geology, 32(1-2): 81-100. [DOI:10.1016/0013-7952(92)90020-Y]
54. Pourghasemi, H.R., M. Mohammady and B. Pradhan. 2012. Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena, 97: 71-84.‌ [DOI:10.1016/j.catena.2012.05.005]
55. Pourghasemi, H.R., B. Pradhan and C. Gokceoglu. 2012. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Natural hazards, 63: 965-996.‌ [DOI:10.1007/s11069-012-0217-2]
56. Pourghasemi, H.R., H.R. Moradi and S.M. Fatemi Oghda. 2015. Prioritizing the factors affecting landslide occurrence and zoning its sensitivity using Shannon Entropy Index, (Case Study: North of Tehran). Journal of Science and Technology of Agriculture and Natural Resources, 18(70): 181-192 (In Persian).
57. Raffatniya, N.A., M.K. Kaviyanpoor and T. Ahmadi. 2011. The study of landslide in Glendrood forest, (Case study: Distriact 3 from catchment area 48). Journal of Science and Technology of Agriculture and Natural Resources, 6(1): 53-63 (In Persian).
58. Rasai, A., Kh. Khosravi, M. Habibnejad Roshan, A. Heidari and A. Mashayekh Khan. 2015. Lnadslide Hazard Zonation using Multivariate Regression in GIS Environment (Case Study: Aghmashhad Watershed, Mazandaran). Juornal of Watershed Management Research, 6(12): 205-215 (In Persian).
59. Różycka, M., P. Migoń and A. Michniewicz. 2017. Topographic Wetness Index and Terrain Ruggedness Index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland. Zeitschriftfür Geomorphologie, Supplementary Issues, 61(2): 61-80. [DOI:10.1127/zfg_suppl/2016/0328]
60. Saldivar-Sali, A. and H.H. Einstein. 2007. A landslide risk rating system for Baguio, Philippines. Journal of Engineering Geology, 91: 85-99.‌ [DOI:10.1016/j.enggeo.2006.11.006]
61. Salmasi, R. and A. Ahmadi. 2012. Relationship between Some Properties of Marls and Different Types of Erosions in Talkhe-rood Watershed, Journal of Geography and sustainability of Environment, 2(3): 11-23 (In Persian).
62. Seyed-Emami, K. and A.A. Aryai. 1981. Ammoniten aus dem unteren Cenoman von Nordostiran (Koppeh-Dagh). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie, 21(2): 23-39.
63. Shahabi, H., S. Khezri, B.B. Ahmad and M. Hashim. 2014. Landslide susceptibility mapping at central Zab basin, Iran: a comparison between analytical hierarchy process, frequency ratio and logistic regression models.Catena, 115: 55-70.‌ [DOI:10.1016/j.catena.2013.11.014]
64. Sharma, B., N. Sharma and N. Sharma. 2010. Simulation of different SPI Models. International Journal of Computer Applicationz, 10: 1-6. [DOI:10.5120/227-378]
65. Shirani, K. and A.R. Arab Ameri. 2015. Landslide Hazard Zonation Using Logistic Regression Method (Case Study: Dez-e-Oulia Basin). Journal of Science and Technology of Agriculture and Natural Resources, 19(72): 321-334 (In Persian). [DOI:10.18869/acadpub.jstnar.19.72.27]
66. Sörensen, R., U. Zinko and J. Seibert. 2006. on the calculation of the topographic wetness index. Evaluation of different methods based on field observations. Journal of Hydrology and Earth System Sciences Discussions, 10: 101-112.‌ [DOI:10.5194/hess-10-101-2006]
67. Weier, J. and D. Herring. 2005. Measuring Vegetation (NDVI and EVI). Earth Observatory Library of NASA. /http.Earthobservatory. nasa. gov/Library/Measuring-Vegetations.‌
68. Weiss, A. 2001. Topographic position and landforms analysis. In Poster presentation, ESRI user conference, San Diego, CA(Vol. 200).‌
69. Wilson, J.P. and J.C. Gallant. (Eds). 2000. Terrain analysis. Principles and applications. John Wiley & Sons, New York.
70. www.usgs.com
71. Yilmaz, I. 2009. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey).Computers & Geosciences, 35(6): 1125-1138. [DOI:10.1016/j.cageo.2008.08.007]
72. Zare, M., M.H. Jouri, D. Asharizadeh, T. Salarian and M. Fakhre Ghazi. 2016. An Evaluation of Landslide Hazard in Masooleh Watershed using Dempster- Shafer Theory and GIS, Journal of Watershed Management Research, 7(13): 209-217 (In Persian). [DOI:10.18869/acadpub.jwmr.7.13.217]
73. Zevenbergen, L.W. and C.R. Thorne. 1987. Quantitative analysis of land surface topography.Earth surface Processes and Landforms, 12(1): 47-56. [DOI:10.1002/esp.3290120107]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2019 All Rights Reserved | Journal of Watershed Management Research

Designed & Developed by : Yektaweb