دوره 12، شماره 24 - ( پاییز و زمستان 1400 1400 )                   جلد 12 شماره 24 صفحات 204-193 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

shahbazbeygy E, yaghoubi B, shabanlou S. Optimization of ANFIS Network using Wavelet Transform for simulation of Long term Rainfall of Rasht City. jwmr. 2021; 12 (24) :193-204
URL: http://jwmr.sanru.ac.ir/article-1-1028-fa.html
شهبازبیگی ابراهیم، یعقوبی بهروز، شعبانلو سعید. بهینه سازی شبکه ANFIS با استفاده از تبدیل موجک برای شبیه سازی بارش دراز مدت شهر رشت. پ‍‍ژوهشنامه مديريت حوزه آبخيز. 1400; 12 (24) :204-193

URL: http://jwmr.sanru.ac.ir/article-1-1028-fa.html


گروه مهندسی آب، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران
چکیده:   (832 مشاهده)
چکیده مبسوط
مقدمه و هدف: تخمین و پیش ­بینی الگوی بارش در نواحی مختلف جهان به ویژه در نواحی خشک و نیمه خشک کره زمین مانند کشور ایران از اهمیت بسزایی برخوردار است. علاوه بر آن روش­  های عددی مختلف مانند روش­های هوش مصنوعی به دلیل دقت و سرعت بالا توانایی شبیه ­سازی پدیده بارش و موضوعات مشابه را دارد. استفاده از این روش ها نقش بسزایی در صرفه­ جویی در زمان و هزینه ­ها در مطالعات میدانی و آزمایشگاهی دارد. بنابراین، روز به روز به کاربرد و محبوبیت تکنیک­ های متنوع هوش مصنوعی برای تخمین و شبیه­ سازی مسائل متفاوت مانند بارندگی افزوده می­ شود. هدف از این مطالعه تخمین بارش دراز مدت شهر رشت توسط یک مدل ترکیبی ANFIS و تبدیل موجک می باشد.
مواد و روش­ ها: در این مطالعه، بارش شهر رشت در یک بازه زمانی دراز مدت 62 ساله از سال 1956 تا 2017 توسط یک مدل ترکیبی بهینه­ یافته هوش مصنوعی شبیه­ سازی شد. به­ عبارت دیگر، برای بهبود عملکرد مدل ANFIS از تبدیل موجک بهره­ گرفته شد و مدل ترکیبی WANFIS تعریف گردید. در ابتدا، با استفاده از تابع خود همبستگی تاخیرهای موثر داده­ های سری­ های زمانی شناسایی شدند. سپس با استفاده از این تاخیرها، برای هر یک از مدل­های ANFIS و WANFIS هشت مدل توسعه داده شد. لازم به ­ذکر است که برای آموزش مدل­های هوش مصنوعی از داده­های 42 سال و برای آزمون آنها از داده­ های 20 سال استفاده گردید. در ادامه، بهینه­ ترین تعداد توابع عضویت مدل ANFIS برابر با دو انتخاب شد.
یافته ها: نتایج مدل­های ANFIS 1 تا ANFIS 8 مورد بررسی قرار گرفتند. سپس اعضای مختلف خانواده موجک برای بهینه­ سازی مدل ANFIS مورد ارزیابی قرار گرفتند. به­ بیان دیگر، demy به­ عنوان بهترین عضو خانواده موجک برای بهبود عملکرد مدل ANFIS معرفی گردید. مقایسه مدل­ های ANFIS و WANFIS نشان داد که تبدیل موجک عملکرد مدل ANFIS را به شکل قابل ملاحظه­ای افزایش داد. سپس نتایج مدل­های ترکیبی WANFIS تجزیه و تحلیل شدند که مدل WANFIS 8 به ­عنوان مدل برتر معرفی شد. این مدل مقادیر بارندگی را با دقت قابل قبولی تخمین زد. به­ عنوان مثال، مقادیر R، MARE و RMSE برای مدل برتر به­ ترتیب مساوی با 0/961، 0/855 و 24/510 میلی متر محاسبه شدند.
نتیجه ­گیری: نتایج نشان داد که تاخیرهای شماره (t-1)، (t-2)، (t-3) و (t-12) موثرترین تاخیرها برای تخمین بارش درازمدت شهر رشت توسط مدل ترکیبی WANFIS بودند.
 
متن کامل [PDF 839 kb]   (44 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: هيدرولوژی
دریافت: 1398/4/9 | ویرایش نهایی: 1400/12/4 | پذیرش: 1400/1/18 | انتشار: 1400/6/10

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2022 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb