1. Abella, E.A.C and C.J. Van Westen. 2008. Qualitative landslide susceptibility assessment by multicriteria analysis;a case study from San Antoniodel Sur, Guantanamo, Cuba (in GIS technology and models for assessing landslide hazard and risk). Geomorphology, 94: 435-466. [
DOI:10.1016/j.geomorph.2006.10.038]
2. Alqadhi, S., J. Mallick, S. Talukdar, A.A. Bindajam, N. Van Hong and T.K. Saha. 2022. Selecting optimal conditioning parameters for landslide susceptibility: An experimental research on Aqabat Al-Sulbat, Saudi Arabia. Environmental Science and Pollution Research, 29(3): 3743-3762. [
DOI:10.1007/s11356-021-15886-z]
3. Aram, A., M.R. Dalalian, S. Saedi, O. Rafieian and S. Darbandi. 2022. Evaluation of the efficiency of artificial intelligence and bivariate statistical models in determining landslide prone areas in West Azerbaijan. Journal of Water and Soil Resources Conservation, 11(4): 63-74 (In Persian).
4. Breiman, L. 2001. Random Forests. Machine Learning: 45(1): 5-32. [
DOI:10.1023/A:1010933404324]
5. Breiman, L., J. Friedman, C.J. Stone and R.A. Olshen. 1984. Classification and regression trees, 1nd edn, CRC press, Pub. Location New York, New York, 368 pp.
6. Cred Crunch Newsletter, Issue No. 68 (September 2022) - Natural Hazards & Disasters An overview of the first half of 2022.
7. Das, S., S. Sarkar and D.P. Kanungo. 2022. GIS-based landslide susceptibility zonation mapping using the analytic hierarchy process (AHP) method in parts of Kalimpong Region of Darjeeling Himalaya. Environmental Monitoring and Assessment, 194(3): 1-28. [
DOI:10.1007/s10661-022-09851-7]
8. Ehsanifar, A., A. Kavyan, K. Soleymani and H. Aghbari. 2011. Landslide risk zoning using overlap index, case study: Abkhaz area of Tajan. The 7th National Conference on Watershed Science and Engineering of Iran, 12-1, Esfahan, Iran (In Persian).
9. Frattini, P., G. Crosta and A. Carrara. 2010. Techniques for evaluating the performance of landslide susceptibility models. Engineering Geology, 111(1): 62-72. [
DOI:10.1016/j.enggeo.2009.12.004]
10. Froude, M.J. and D. Petley. 2018. Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth. Natural Hazards and Earth System Sciences, 18(8): 2161-2181. [
DOI:10.5194/nhess-18-2161-2018]
11. Hagan, M.T., H.B. Demuth and M.H. Beale. 1996. Neural Network design. 1nd edn, PWS press, United States of America, 800 pp.
12. Hanifinia, A., H. Nazarnejad, S. Najafi and A. Kornejady. 2020. Prioritization of Effective Factors on Landslide Occurrence and Mapping of its Sensitivity in CherikAbad Watershed, Urmia Using Shannon Entropy Model. Watershed Management Research, 33(4): 30-46 (In Persian).
13. Heydari, N., M. Habibnejad, A. Kavian and H.R. Pourghasemi. 2020. Landslide susceptibility modelling using the random forest machine learning algorithm in the Watershed of Rais-Ali Delvari Reservoir. Watershed Management Research, 33(1): 2-13 (In Persian).
14. Lawrence, R.L. and A. Wright. 2001. Rule-based classification systems using classification and regression tree (CART) analysis. Photogrammetric Engineering and Remote Sensing, 67(10): 1137-1142.
15. Liaw, A. and M. Wiener. 2002. Classification and regression by randomForest. R news, 2(3):18-22.
16. Lin, X.S. and J. Xu. 2007. The Study of the Complexity of Landslide Hazard. Res. Soil Water Conservation, 05: 359-363.
17. Madadi, A., E. Piroozi and M. Faal Naziri. 2021. A Comparative Evaluation of MABAC and CODAS Multi-Criteria Decision Algorithms in Landslide Risk Zoning (Case Study: Kowsar County). Geography and Environmental Planning, 31(4): 1-24 (In Persian).
18. Mahnaj, M.B. 1998. Introduction to artificial neural network, 1st Edition, Professor Hesabi Publication, 642 p.
19. Mora, S. and W.G. Vahrson. 1992. Determinación "a priori" de la amenaza de deslizamientos utilizando indicadores morfodinámicos. In Álzate, J. B. (editor), Memoria del Primer Simposio Internacional Sobre Sensores Remotos y Sistemas de Información Geográfica (SIG) Para el Estudio de Riesgos Naturales: Bogotá, Colombia, 259-273.
20. Nazariani, N., A. Fallah, M. Imani Rastabi and F. Bakhshi. 2022. Modeling the Comparison volume of Pure and Mixed Stands of Beech Trees Using Non-parametric Algorithms in the Educational-research Forest of Darabkola. Iranian Journal of Forest and Poplar Research, Online publication (In Persian).
21. Pham, B.T., T.V. Phong, T. Nguyen-Thoi, K. Parial, K.S. Singh, H.B. Ly, K.T. Nguyen, L.S. Ho, H.V. Le and I. Prakash. 2022. Ensemble modeling of landslide susceptibility using random subspace learner and different decision tree classifiers. Geocarto International, 37(3): 735-757. [
DOI:10.1080/10106049.2020.1737972]
22. Pourghasemi, H.R., M. Mohammady and B. Pradhan. 2012. Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena, 97: 71-84. [
DOI:10.1016/j.catena.2012.05.005]
23. Pourghasemi, H.R. and O. Rahmati. 2018. Prediction of the landslide susceptibility: Which algorithm, which precision. Catena, 162: 177-192. [
DOI:10.1016/j.catena.2017.11.022]
24. Rafiei Sardooi, E. 2022. Landslide Susceptibility Simulation Using Data Mining Models in Rabor Area. Watershed Management Research Journal, 35(2):101-118 (In Persian).
25. Raghuvanshi, T.K., J. Ibrahim and D. Ayalew. 2014. Slope stability susceptibility evaluation parameter (SSEP) rating scheme-an approach for landslide hazard zonation. Journal of African Earth Sciences, 99: 595-612. [
DOI:10.1016/j.jafrearsci.2014.05.004]
26. Reis, L.P., A.L. Souza, P.C.M. Reis, L. Mazzei, C.P.B. Soares, C.M.M.E. Torres, L.F. Silva, A.R. Ruschel and L.J.S. Rêgo. 2018. Estimation of mortality and survival of individual trees after harvesting wood using artificial neural networks in the amazon rain forest. Ecological Engineering, 112: 140-147. [
DOI:10.1016/j.ecoleng.2017.12.014]
27. Rezaee Banafshe, M., H. Rostamzadei and B. Feyzizadeh. 2010. Investigating and evaluating the changing process of forest levels using remote sensing and GIS (case study of Arsbaran forests 1987-2005). Geographical Research, 40(1): 143-159 (In Persian).
28. Shariat Jafari, M. 1996. Landslide (basics and principles of stability in natural slopes). Saze Publications, 205 p (In Persian).
29. Shirani, K. and R. Naderi Samani. 2022. Determination of Effective factors and Assessment of Landslide Susceptibility Using Random Forest and Artificial Neural Network in Doab Samsami Region, Chaharmahal and Bakhtiari Province. Watershed Management Research Journal, 35(1): 40-60 (In Persian).
30. Steger, S., A. Brenning, R. Bell and T. Glade. 2017. The influence of systematically incomplete shallow landslide inventories on statistical susceptibility models and suggestions for improvements. Landslides, 14: 1767-1781. [
DOI:10.1007/s10346-017-0820-0]
31. Strobll, R.O. and F. Forte. 2007. Artificial neural network exploration of the influential factors in drainage network derivation. Hydrological Processes, 21: 2965-2978. [
DOI:10.1002/hyp.6506]
32. Tien Bui, D., H. Moayedi, M. G€or, A. Jaafari and F. L. Kok. 2019. Predicting slope stability failure through machine learning paradigms. ISPRS International Journal of Geo-Information, 8(9): 395. [
DOI:10.3390/ijgi8090395]
33. Tiryaki, S. and A. Aydin. 2014. An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model. Construction and Building Materials, 62: 102-108. [
DOI:10.1016/j.conbuildmat.2014.03.041]
34. Tooke, T.R., N.C. Coops, N.R. Goodwin and J.A. Voogt. 2009. Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications. Remote Sensing of Environment, 113: 398-407. [
DOI:10.1016/j.rse.2008.10.005]
35. Varnes, D.J. 1958. Landslide types and processes. Landslides and engineering practice, 24: 20-47.