پیشبینی تراز آب زیرزمینی به منظور مدیریت و برنامهریزی منابع آب، بسیار مهم است. برای انجام این پیشبینی، از روشهای متعددی مانند روشهای استوکستیکی، منطق فازی و شبکه عصبی مصنوعی میتوان استفاده نمود. در تحقیق حاضر، مدل شبکه عصبی مصنوعی RBF هیبرید برای پیشبینی تراز آب زیرزمینی دشت شاهرود مورد استفاده قرار گرفته است. این هیبرید بودن شبکه باعث افزایش دقت روش نسبت به شبکه RBF پایه میشود. بدین منظور آمار ماهانه تراز ایستابی دشت شاهرود و همچنین دادههای هواشناسی مانند دما، بارندگی، رطوبت و تبخیر، دادههای آبهای سطحی مانند دبی ورودی و خروجی به دشت شاهرود (دبی ورودی مجن آبشار، دبی ورودی تاش فرحزاد و دبی خروجی قلعه نو) طی یک دوره آماری 1994 تا 2010 استفاده شده است. بررسی دادهها نشان میدهد که برخی از دادهها، همبسته بوده و دارای الگوی فصلی هستند، این مسأله، پیشبینی دادهها را دشوار میکند. بر این اساس، روش ارائه شده در این مقاله شامل مراحل غیرفصلی سازی، نرمالسازی و حذف دادههای وابسته است که پیش از این به آن در تحقیقات پرداخته نشده است. سپس از 85 درصد دادهها برای آموزش و از 15 درصد آنها، برای تست مدل استفاده شده است. در نهایت، بررسی نتایج نشان میدهد که مدل شبکه عصبی ارائه شده، تراز آب دشت شاهرود را برای سه سال پیاپی با میانگین مربعات خطای 0257/0 متر برای سال اول، 0270/0 متر در سال دوم و 0452/0 متر در سال سوم میتواند پیشبینی کند. همچنین در صورتی که بارش منطقه در یک سال، 30 درصد کاهش یابد، نتایج پیشبینی مدل مذکور نشان میدهد که تراز آب زیرزمینی 7/0 کاهش مییابد.
بازنشر اطلاعات | |
این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است. |