1. Akbarzadeh, F., H. Hasanpour and S. Imam Gholizadeh. 2016. The prediction of groundwater level in Shahroud plain using artificial radial neural network, Water Management Management Research Center, seventh year, No. 13.
2. Banerjee Chattopadhyaya, P. and R. Rangarajana. 2014. Applicationof ANN in sketching spatial nonlinearity of unconfined aquifer inagricultural basin. Agricultural Water Management, 133: 81-91. [
DOI:10.1016/j.agwat.2013.11.007]
3. Banerjee, P., R.K. Prasad and V.S. Singh. 2009. "Forecasting of groundwater level in hard rock region using artificial neural network." Environmental Geology, 58(6): 1239-1246. [
DOI:10.1007/s00254-008-1619-z]
4. Chung, Y.W. 2008. Prediction water table fluctuation using artifical neural network, in partial fulfillment of the requirements for the degree of doctor of philosophy, University of Maryland, 185 pp.
5. Coppola, E., M. Poulton, E. Charles, J. Dustman and F. Szidarovszky. 2003. Application of artificialneural networks to complex groundwater management problem, Natural Resources Research, 12: 303-320. [
DOI:10.1023/B:NARR.0000007808.11860.7e]
6. Esmaeili, V., M. Khayyate Kholqi and M. Shafiey. 2002. Presentation of an intelligent model for estimating groundwater level fluctuations in an alluvial aquifer using artificial neural network. The first Annual Conference of Iran Water Resources Management, Water Resources Science Forum Tehran Iran, Tehran University.
7. Izadi, A.S., A. Davari, K. Alizadeh, A.B. Qahraman and S.A. Haqaiqi Moqaddam. 2007. Estimation of surface level using artificial neural network, Iranian Journal of Irrigation and Drainage, 2: 59-71.
8. Khashei seok, A.S., B. Qahraman and M. Kochek Kord. 2013. Compared to artificial neural network models, ANFIS, regression In the estimation of aquifer Nishapur, Iranian Journal of irrigation and drainage, 1(7): 10-22.
9. Lallahem, S., J. Mania, A. Hani and Y. Najjar. 2005. On the use of neural networks to evaluate groundwater levels in fractured media. Journal of Hydrology, 307: 92-111. [
DOI:10.1016/j.jhydrol.2004.10.005]
10. Mekanik, F., M.A. Imteaz, S Gato-Trinidad and A. Elmahdi. 2013. Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes. Journal of Hydrology, 503, 11-21 [
DOI:10.1016/j.jhydrol.2013.08.035]
11. Mir Arabi, M. 2008. AS. Nakhaie. Prediction of ground water level fluctuations in Birjand plain using artificial neural network, Proceedings of the Twelfth Iranian Geological Survey, Ahvaz, pp: 1-8.
12. Mohanty, S., Jha, Madan, K. Kumar Ashwani and D.K. Panda. 2013. Comparative evaluation of numerical model and artificial neural network for simulating groundwater flow in Kathajodi-Suru Inter-basin of Odisha, India. Journal of Hydrology, 495: 38-51. [
DOI:10.1016/j.jhydrol.2013.04.041]
13. Mohtasham, M., A. Dehghani, A. Akbarpour, M. Meftah Holghi and M. Eatebari. 2010. Estimation of the level of the station using the Artificial Neural Network of Shabestar Plain, Journal of Irrigation and Drainage, Year, No. 1.
14. Mokhtari, Z., A. Nazemi and A. Nadiri. 2012. The prediction of ground watear leveling using Shistar plain artificial neural network model, Geotechnical Geology (Applied Geology), 8(4): 345-353.
15. Moslemei, K., S. Emam Qolizadeh and G.H. Karami. 2011. Comparison of artificial intelligence systems ANN and ANFIS in forecasting groundwater level of Bastam Plain Fifth conference of watershed management and soil and water resource management, Kerman, Iran, irrigation and water engineering.
16. Mothakane, A., B. Arabi, H. Shokri and B. Mir Bagheri. 2012. Estimated amount Changes in rainfall estimation using combined techniques of artificial neural networks and geostatistics in the North West of Iran, Quarterly Journal of Remote Sensing and GIS of Iran, 16: 37 pp.
17. Nayak, Satyaji Rao, Y.R. and K.P. Sudheer. 2006. Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resources Management, 2(1): 77-99 [
DOI:10.1007/s11269-006-4007-z]
18. Nikbakht, J. and S. Noori. 2017. Clustering of Observational Wells and Forecasting Groundwater Levels Using Artificial Neural Networks (Case Study: Maragheh Plain). Water and Soil Knowledge 27(1): 281-94.
19. Pour Mohammadi, S., H. Malekinejad and V. Pour Sharaani. 2013. Comparison of different methods Vsry time neural network to predict the groundwater level (case study: Sub-basin Bakhtegan Fars Province) Journal of Water Conservation and Watershed Research, 20(4): 251-261.
20. Report of Integrated Water Resources Management Studies,Torbat Heydarieh, Cover two, Meteorology, Khorasan Razavi Regional Water Company, Year, 2014.
21. Report of Integrated Water Resources Management Studies,Torbat Heydarieh, Cover three, Meteorology, Khorasan Razavi Regional Water Company, Year, 2013.
22. Sadidi, G., M. Kamangar, H. Rezaeian, A.S. Hamidiyan, M. Baaqedeh and H. Aryan Nezhad. 2014. Anticipation of the level watear of arid and arid regions using Artificial Neural Network and Gradient Descent method, Geographical studies of arid regions, 16: 39-53.
23. Shigidi, A. and L.A. Garcia. 2003. Parameter estimation in groundwater hydrology using artificia neural networks. J.of Computing in Civil Engineering, 17(4): 281-289. [
DOI:10.1061/(ASCE)0887-3801(2003)17:4(281)]
24. Sreekanth, P.D. Geethanjali, N. Sreedevi, P.D. Ahmed, Sh.N. Ravi Kumar and P.D. Kamala Jayanthi. 2009. Forecasting groundwater level using artificial neural networks, Current Science, 96: 1-7.
25. Taormina, R., Ch. Kwok-wing and S. Rajandrea. 2012. Artificial neural network simulation of hourly groundwater levels in acoastal aquifer system of the Venice lagoon. Engineering Applications ofArtificial Intelligence, 25: 1679-1676. [
DOI:10.1016/j.engappai.2012.02.009]
26. Tasaloti, B. 2003. Estimation of groundwater level using mudflow and artificial neural network. Master thesis, Faculty of Agriculture, Tarbiat Modares University, p. 105.
27. Zabbah, I., A. Roshani and A. Khafage. 2018. Prediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh. Journal of the Earth and Space Physics, 44(4), 115-126. doi: 10.22059/jesphys.2018.244511.1006941
28. Zamani, N., M. Javaheri Tehrani, S. Eslamian and F. Mousavi. 2016. Simulation of Groundwater Table of Mahyar Plain with Artificial Neural Network Geographic Information System Under Different Scenarios.